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Velocity rescaling method

Temperature of the system during the simulation is calculated from the
Kinetic energy KE=3/2NkgT

Simplest way to maintain a constant T Is to rescale the velocities
consistent with the desired temperature

Suppose at time t temperature is T(t) and the velocities are multiplied by
a factor A. Then the change in temperature is

AT o1\ oMi(A:)% 1 N Zmivi2 At each time step multiply the
“243 Nky 243 Nk velocities by A. T(t) is calculated
5 from the KE at time t
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ﬂ:\/Tdesired T d*““equations of motion™ are irreversible

d“transition probabilities” cannot satisfy
detailed balance
ddoes not sample any well-defined ensemble



Berendsen Temperature coupling JCP, 81, 3684 (1984)

Berendsen algorithm mimics weak coupling to a an external heat bath at constant
temperature T,. Such a coupling can be accomplished by inserting a stochastic and

friction term in equation of motion
Where vy; is damping constant which determine the strength of the coupling with the

heat bath. For time being consider y; = y (friction constant equal for all particles).
R(t) is a Gaussian stochastic variable satisfying following relation

<R (DR, (t+7)>=2m,yKT 6(7)0;
Time dependence of the total kinetic energy Is given by

dci _Hm[{Z—mv (t+ At) — Z%mivzi(t)}/ At]

N Is the number of particles
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Since R 1s Gaussian noise
3N [+At 't+At ) | )
> [ dt [ dtR ()R () =6NmyKT At

=1 t

Also note that R;(t) is uncorrelated with velocities and systematic force
E.



JCP, 81, 3684 (1984)
So we have

dE, 3N
E 3N 1
= |Z=1V' |+27[TkTO Ek] Home work

You can recognize the first term: it is just equal minus the time derivative of potential
energy and so would be unaltered in the absence of thermostat. Second term can be
identified with the temperature change due to the coupling to the heat bath and we can
associate this with time dependence of the system temperature

ch 2 [To TJ

Time constant for the coupling T+ is equal to (2y)*



So the temperature deviation decays exponentially with time with time constant T and
the equation of motion can be written as

01

T Y

m. V. =Fi—m.7/ |

From the above equation we have

dE 3N
- j = _
T_%mivivi _ElviFi+3Nyk(To T|

This is equivalent to the original stochastic equation



So the temperature is controlled by scaling the velocities of the particle as each time
step with a time dependent constant given by

T

14+ AU 0
A 1+2TT T 1

Remember the leap-frog integrator v(t + %&) = v(t— %50 n % F(t)ot

We can impose similar condition on temperature
T(t+56t) =T (t—55t) + 2y5t[Ty — T (t - 5 61)]
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T T
T
If =1 is large, then the coupling will be weak. If T is small, the coupling will be strong
and when the coupling parameter equal to integration time step (v =ot) then this

algorithm is equivalent to simple velocity rescaling method. A good value is 0.5 -1 ps
when ot = 1 fs.

more general expression A=




Advantage:

«Strength of the coupling can be varied and adapted to the use requirement
*\/ery easy to code

*\/ery efficient to bring the system to a desired temperature.

Disadvantage:

Does not represent a true canonical ensemble. Velocity rescaling artificially
prolongs any temperature difference among components of the system, which
can lead to the phenomena of “hot solvent’ and “cold solute’, even though the
temperature of the system is at its desired value. This can be avoided by having
separate temperature coupling to the solute and solvent, but this leads to the
unequal distribution of energy among various components.

Solution: Extended system method, like Nose-Hoover thermostat



For pair wise interaction the energy of the system of N particles is given
by

2
_v P

Partition function is given by

p2

Q =pi g J4ENrjaN pexp{ BY b X0l B3y

The momentum integral can easily be carried out
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So the partition function becomes

- 3/27N
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Also called Mayer function
The Free energy can be written as

F = —kgTInQy =—NKT InV —NKT 1 2ZMKT g

2 h2

3N
—kT In— d 1+ f.
v N j palrs( i)



Thermodynamically pressure is defined as
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where F =



In general we can not evaluate the above expression exactly for any
v(r;)- If we assume v(r;;) Is small and so Is f(r;). Then we can simply the
above equation keeping only first order terms

F=tin de3Nr M @+f)
N v pairs I
N -1
L Ly N NIN=DVE g g3y
Ny N 2
N2 2
—In 1+—jf(r)d r N(N-1)/2=N?%/2

Taking derivative and keeping first order term we have

oF | N . :
Fvinin e f(r)d>r Virial equation ﬂ=1—N—j1‘(r)d3r
N v NKT n/



Equipartition and virial theorem

oH
We want to compute the expectation value of % - —In
the canonical ensemble it is given by J

J[Xi g(_l}ﬂH dw
oM ]
iéxj ) je_’BH dw

Integrate by parts over Xx; (the numerator only)

OX.
j—lx —PH |+ j[ ]'Bdede
J

g (J)

First part vanishes because whenever any of the coordinates takes an
extreme value the Hamiltonian of the system becomes infinite.



Second term becomes
i5__ [ e P gw
J
So the expectation value becomes

<x. aH>_5__kT
l@xj J

This gives <



Summing over all 1 from 1=1.. 3N

Virial theorem states that

W =<; 0, pi>:—3NkT
|

Virial has two component: one from the external forces Wt (like the

pressure exerted by the wall of the container) and W™ arising from the

forces between the particles.



W ext =<Z tii>:—P§r.dS :—P\;(div rydv =-3PV
I S

So we have virial equation

PV = NKT +%<Wi”t>

_ 1/N N
= NKT _§<i§1ri -ViU (r )>

More details Allen and Tildesley , section 2.4



Computation of the pressure for the rigid molecules

The thermodynamic definition of the pressure

P— kT (8 In QN)
T

oV

In order to derive the molecular expression for the pressure we explicit
the volume dependence of the configurational integral by introducing
dimensionless positional variable s;, defined as

r, = ‘/71382 for i = 1, ... N

In terms of this new variable the partition function becomes

Ox = — /ds dw® exp(—=U({s,w}N)/kpT)



We have the pressure expression given by
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Constant pressure simulation (NPT ensemble)

Pressure during the simulation can be computed from the virial. For a
pairwise additive interactions

P = pkoT +d{/<_z_ f(rij).rij>

i<j



Constant pressure simulation (NPT ensemble)

Easiest way to maintain constant pressure is by changing the volume of the simulation
cell. The volume fluctuation is related to the isothermal compressibility

V

R

In the same way as the temperature coupling, the system can be coupled to pressure
path to control the pressure of the system: at each time step both the coordinates and
box size will be rescaled. To achieve this an extra term is added to the equation of
motion

dP _ P

dt Tp

Pressure can be computed as

=__1 : ' "
p_ 2 {E _EJ where ==75.2 Lo Fao IS the internal virial



The pressure change is related to the isothermal compressibility 3 as follows:

dP__ 1 dV_ 3«
dt~ A/ dt B

With a given by
a:—,B[PO— PJ/3TP

So the modified equation of motion is given by

X:V—ﬁ(:()_ PJX:/JX
T

| _ P

iR given by u=1‘3ﬂrA;[Po‘P}

So at each time step x is scaled by ux and length of the simulation box is scaled by pl



The Update algorithm
Given
Positions r of all the atoms at time t
Velocities v of all atoms at time t-dt/2
Accelerations F/m on all atoms at time t
Total kinetic energy and virial

4
1. Compute the scaling factors Aand p
4
2. Update and scale velocities: v’ = A(v+adt)
!
3. Compute new unconstrained coordinates: r’=r+v’dt
4

4. Scale coordinates and box: r = ur’and b = ub



Pressure fluctuations

2 — 8—P:
<APZ>=—KT ZF =KT /(AV)

So <AP >:\/1/7

For water = 44.6x10%/bar



Andersen Thermostat Frenkeland Smit
Chapter 6

« Each molecule undergoes impulsive “collisions” with a heat bath at
random intervals

« Between collisions the system evloves at constant energy
 Collision frequency v describes strength of coupling

— Probability of collision over time dt is v dt

— Poisson process governs collisions p(t;v)=ve™

» Start with an initial set of {r,p} and integrate the equations of motion.
» A number of particles are selected to undergo a collision with heat
bath. The probability that a particle is selected in a time step of length ot
IS vt

» If particle 1 has been selected to undergo a collision, its new velocity
will be drawn from MB distribution corresponding to desired T. All
other particles are unaffected.



Algorithm 15 (Equations of Motion: Andersen Thermostat)

subroutine integrate(switch,f
,en, temp)
if (switch.eg.l) then
do i=1,npart
x(it=x(i)+d*vii)+
de*de*f (1) /2
vii=vi{i)+dt*f (i) /2
enddo
elge if (switch.eq.2)
tempa=0
do i=1,npart
viit=vi(iy+dt*£(1i) /2
tempa=tempa+v (i) **2
enddo
tempa=tempa/ (s*npart)
sigma=sgrt (temp!
do i=1,npart
if (ranf(}.lt.nmu*dt)
v(i}=gauss {sigma)
endif
enddo
endif
returm
end

then

then

integrate equations of motion:
with Andersen thermostat
first step velocity Verlet
update positions current time

first update velocity

second step velocity Verlet

second update velocity

instantanecus temperature
Andersen heat bath

test for collision with bath
give particle Gaussian velocity
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Figure 6.1: Velocity distribution in a Lennard-Jones fluid (T = 2.0, p =
0.8442, and N = 108}). The solid line is the Maxwell-Boltzmann distribu-
tion (6.1.1), and the symbols are from a simulation using v = 0.01 and
v = 0.001 as collision rates.



Nose-Hoover thermostat

In the extended ensemble approach the system Hamiltonian is extended by introducing
a thermal reservoir and a friction term in the equation of motion. The friction force is
proportional to the product of each particle velocity and a friction parameter £. The
friction parameter is a fully dynamic quantity with its own equation of motion; the time
derivative is calculated from the difference between the current and reference

temperature

sintroduce a new degree of freedom, s, representing
reservoir

eassociate kinetic and potential energy with s Us =—gkTIns
L m; (s)? Ny, QL2 Ks =3Qs8°
LNOSE:Z%—U(r )+ES —gkTIns X
=T 5 effective
[
_ o Frenkel and Smit
S o Chapter 6



Extended-Lagrangian Fermulation

To construct isothermal Molecular Dynamics, Nosé introduced an additional
coordinate s in the Lagrangian of a classical N-body system:

N
Lrjose = Z Eszf? — UMY + gs}z - —Ins, (6.1.3)

where L is a parameter that will be fixed later. Q is an effective “mass”
associated to s. The momenta conjugate to r; and s follow directly from

equation (6.1.3):

oL .

pi = E:miszri (6.1.4}
oL 1

Ps = EST=Q5- (6.1.5)

This gives for the Hamiltonian of the extended system of the N particles plus
additional coordinate s:

p2 Ins
= — + [ —. 6.1.6



We consider a system containing N atoms, The extended system generates a
microcanonical ensemble of 6N + 2 degrees of freedom. The partition func-
tion of this ensemble? is

)
Onese = deDstdedrwﬁfE—?{nﬂmJ
Tf N N3N
= ﬁ—ludpstdp drs
i 5 ,
p'; N (4= L
% & + (") + +—=Ins—E|, (6.1.7)
; 2 QB
in which we have introduced
p =p/s
Let us define
N p,z
i _ i I
Hip'ir) =) S U, (6.1.8)



B 1 N B53N+1
QNose = m‘[d‘[jsdp dr”ds L
xﬁ{ e [_ﬁ ]+1qu[20_ H
1 E(3N+1)/L SN 1
X Jdp’NdrN exp [—]3 NL+ ! 'H{pﬂr]]
] 3N+ 1
= Cdep’NdrN exp [—43 T Hip',rx } : (6.1.9)

If we perform a simulation in this extended ensemble, the average of a quan-
tity that depends on p’, r is given by

A — fim 1r dt Alp{t)/s(t), K(t)) = (Alp/s, 1))y (6.1.10)
d

T—0o T



From the Hamiltonian (6.1.6), we can derive the equations of motion for
the virtual variables p, r, and t:

dri . a?{mm . .2

Eﬁ:_ - aP*‘L == Plf{mls ]
dps  OHnese  OU(™)

dt - aI"l N al':L
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Figure 6.4: Velocity distribution in a Lennard-Jones fluid (T = 1.0, p = 0.75,
and N = 256). The solid line is the Maxwell-Boltzmann distribution {6.1.1)
the symbols were obtained in a simulation using the Nosé-Hoover thermo-
stat.



Nosé Thermostat 2.

» Extended-system Hamiltonian is conserved

p| pS
H —U(r )+——gkTIns
Nose ™ %2 S Q

e Thusthe probablllty dlstrlbutlon can be written

_ o(H Nose ENose)
)=
QNose
— It can be shown that the molecular positions and momenta follow a canonical
(NVT) distribution if g = 3N+1

e scan be interpreted as a time-scaling factor

- ttrue = t3|m/S
— since s varies during the simulation, each “true” time step is of varying length

7z(r 'S, Ps



Nosée-Hoover Thermostat 1.

o Advantageous to work with non-fluctuating time step

« Scaled-variables equations of « Real-variables equation of
motion motion
— constant simulation At f :%
— fluctuating real At | sp
P =F _—spi
. _OH _ p; 0
I = - 2 S S
5[2), m; S — = &
5 ot s 0
i~ A T N
o a(sps/Q) 1 (Z b ngj
o _ps A Jan
ops  Q




Nose-Hoover Thermostat 2.

» Real-variable equations are of the form

=P
m
Pi =Fi —2p;
S_ £ (redundant; s is not present in other equations)

S
o1 (N o}
Q izzimi
« Compare to isokinetic equations
I"izpi/m Zn]{IpIFI
. A= 1
pi=FK-4p Zmipi'pi
» Difference is In the treatment of the friction coefficient
— Nosé-Hoover correctly samples NVT ensemble for both momentum and

configurations; isokinetic does NVT properly only for configurations



Nose-Hoover Thermostat 3.

» Equations of motion

_1(5p
_Q(Emi ngj

» Integration schemes
— Verlet algorithm is feasible, but tricky to implement

t-ot t t+ot

e F — p
r At this step, update of & 5 |

Y —%  depends on p; update of p ¢ Z kT
F 7~ depends on & iy,
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