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Complexity of Force Calculations 

 Complexity is defined as how a computer algorithm scales with the 

number of degrees of freedom (particles) 

 Number of terms in pair potential is N(N-1)/2   O(N2) 

 For short range potential you can use neighbor tables to reduce it to 

O(N) 

• (Verlet) neighbor list for systems that move slowly 

• bin sort list (map system onto a mesh and find neighbors from 

the mesh table) 

 Long range potentials with Ewald sums are O(N3/2) but Fast Multipole 

Algorithms are O(N) for very large N. 



Comparison of timing for various non-bond computation 

methods  

Comparison of various schemes to calculate the energy, time vs 

Number of particles N: rc=2.5 and Verlet Radius r=3.0 

Figure from Frenkel 

and Smit 



Radial Distribution Function 

 Radial distribution function, g(r) 

• key quantity in statistical mechanics 

• Gives the probability of finding a pair of atoms a distance r 

apart,relative to the probability expected for a completely 

random distribution at same density 

 Definition 
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Various thermodynamic quantities in terms of g(r) 

Ensemble average of any pair function can be expressed in terms of 

g(r) as follows 

For example we can write the energy as (assuming pair-wise 

additivity 
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Simple Long-Range Correction 

 Approximate distant interactions by assuming uniform 

distribution beyond cutoff:  g(r) = 1 r > rcut 

 Corrections to thermodynamic properties 

• Internal energy 

 

 

• Virial 

 

 

• Chemical potential 
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For rc/ = 2.5, these are about 

5-10% of the total values 



Coulombic Long-Range Correction 

 Coulombic interactions must be 
treated specially 

• very long range 

• 1/r form does not die off as quickly as 
volume grows 

 

 

• Tail correction diverges unless u(r) 
decays faster than r-3 

• So we can not use truncation plus long 
range correction for Coulombic and 
dipolar interactions 

Methods 

• Full lattice sum (Ewald summation) 

• Treat surroundings as dielectric 
continuum 
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Ewald Sum (Frenkel + Smit, Ch 12) 
Consider a system of N positively and negatively charged particles in a 

volume V (V=L3). 

Assume charge neutrality  

Coulomb energy of this N-particle system is given by 

 

 

 

(ri) is the electrostatic potential at the position of ion  i 
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A series             is  said to converge conditionally if                       exists and is a finite 

  

 

number (not ∞ or −∞), but    

 

A classical example is given by 

   

The prime on the summation indicates that the sum is over all periodic 

images n and over all particles j, except j =i if n=0. The sum is 

conditionally convergent. : it contains a mixture of positive and negative 

terms Separately both the positive and negative terms form a divergent 

series.  The sum of a conditionally convergent  series depents on the 

order in which its terms are considered.  

which converges to            but is not 

absolutely convergent 
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Now we have three contribution 

•Potential due to point charge qi 

•Potential due to Gaussian screening charge cloud with charge –qi 

•Potential due to compensating charge cloud with charge qi 

The contribution to the electrostatic potential at point ri due to a set of 

screened charges can easily be computed by direct summation because 

the electrostatic potential due to screened charge is a rapidly decaying 

function of r. A Gaussian charge distribution of following form is  

Commonly used 
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Review of Basic Electrostatics 

 Force between charges 

 In terms of electric field 

 Static electric field satisfies 

 

 

 Charge density (r) 

• for point charge q2: 

 Electrostatic potential 

• zero curl implies E can be written 

• potential energy of charge q1 at r, relative to position at infinity 

 

 Poisson’s equation 

•   
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For a single charge z at the origin the solution of this equation is the 

Coulomb potential   
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For a collection of N point charges we can define a charge density 
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Fourier transform allows us to cast these equations in a different 

form.Let us consider a periodic system with a cubic box of length and 

volume V. Any function f(r) that depends on the coordinates can be 

written as a Fourier series 
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Where k=(2/L)l with l=(lx,ly,lz) are the lattice vectors in Fourier 

space.The Fourier coefficients f(k) are calculated using  
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If take the following form for Fourier space charge density 
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Poisson equation in Fourier space takes the following simple form 

For example, to find the solution for Poisson’s equation for a point 

charge of strength z at the origin, we have to perform the Fourier 

transform of a delta function  
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So the solution for Poisson’s equation becomes  
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Now for a collection of point  charges with charge  

density given by 

 

 the electrostatic potential is given by 
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So in Fourier space solution of Poisson’s equation is obtained by 

multiplying g(k) with (k) 



Convolution Theorem  (Arfken Chapter 15) 
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If we have a function f1(x) which is the convolution (*) of two other 

functions f2(x) and f3(x)  

Then the Fourier coefficients of these functions are related by a simple 

multiplication  
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This is useful when we have a charge distribution that does not 

consist of simple point charges, but a more diffusive distribution  
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(r) is the shape of the single charge distribution 



The solution of Poisson’s equation for such charge  

distribution becomes  
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Ewald Sum 

 We want to sum the interaction energy of each charge in the central 
volume with all images of the other charges 

• express in terms of electostatic potential 

 

 

 

• the charge density creating the  
potential is 

 

 

 

 

• this is a periodic function (of period L), 

 but it is very sharp 

Fourier representation would never converge 
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Ewald Sum:  Fourier 1. 

 Compute field instead by smearing all the charges 

 

 

 

 

 Electrostatic potential via Poisson equation 

• direct space form 

• reciprocal space  

 Fourier transform the charge density 
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With the above charge density in Fourier space Poisson’s equation 

becomes 
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 Invert transform to recover real-space potential 

 

 

 

 

• in principle requires sum over infinite number of wave vectors k 

• but reciprocal Gaussian goes to zero quickly if  is small 
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 The electrostatic energy can now be obtained 

• for point charges in potential of smeared charges 

 

 

 

 

 

 

 

 Two corrections are needed 

• self interaction 

• correct for smearing 
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Ewald Sum.  Self Interaction 1. 

 In Ewald sum, each point charge is replaced by smeared 

Gaussian centered on that charge 

• this is done to estimate the electrostatic potential field 

 

 

 

 

 

 

 All point charges interact with the resulting field to yield the 

potential energy 

• This means that the point charge  

interacts with its smeared  

representation 

• We need to subtract this 
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Ewald Sum.  Self Interaction 2. 

We work in real space to deal with the self term 

• Poisson’s equation for the electrostatic potential due to a single 

smeared charge 
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In Spherical coordinate with the Gaussian charge density 

Integration by parts 
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Ewald Sum.  Self Interaction 2. 
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Ewald Sum.  Real space contribution 

We add the correct field and subtract the approximate one to 

correct for the smearing 

 

 

 

 

 

 This field is short ranged for large  (narrow Gaussians) 

• can view as point charges surrounded by shielding countercharge 

distribution 
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Ewald Sum.  Smearing Correction 2. 

 Sum interaction of all charges with field correction 

• convenient to stay in real space 

• usually  is chosen so that sum converges within central image 

 

 

 

 

 Total Coulomb energy 

 

• each term depends on , but the sum is independent of it 

if enough lattice vectors are used in the reciprocal- and real-space sums 
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Choice of parameters 
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Real space part of the energy involves evaluating  

(consider 1/2=  

To ensure convergence of the real space part we need to choose  such 

that erfc is small at the real-space cutoff R. Suppose we specify small to 

be exp(-p). So p controls the accuracy. For large values of argument erfc 

behaves as exp(- 2r2). SO we demand  

                                          2r2=p  

                                         or =p1/2/R                  (1) 

Fincham, Mol. Simulation, 13,1-9 (1994) 

In Fincham notation  = 2 
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For reciprocal space we need to compute the following 

The rate of convergence is controlled by the factor exp(-k2/4 2). Like 

before if we require the terms to have the value exp(-p) at the reciprocal 

cutoff K, then we have  

                                       p=K2/ 4 2  

                               or   K = 2 p1/2=2p/R             (2) 

Equ. 1 and 2 specify the choice of parameters   and reciprocal cutoff K 

once the accuracy parameter p and real space cutoff R have been chosen 
 



Time estimate for Ewald summation 

The number of ions within the cutoff sphere is  

                   4/3R3n, n is the number density 

Each of the N ions interacts with the other ions in the surrounding 

cutoff sphere , but each pair interactions needs to be considered only 

once. Thus   

                         TR=1/2 N 4/3R3ntR 

The value of reciprocal space within a cutoff K is 
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3

3

3
4

38

3

3

38
3

4

nR

NpL

R

p























 Where n = N/L3 

This grows as N as the density of points in k-space 

 increases with system 



For each k-points a sum over over N ions needs to be performed and the 

execution  time is  
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So the total execution time for real space and k-space summation is 

given by  
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For fixed p and R, TR varies as N and TF varies as N2 

To find the optimal value of R which minimizes the total execution time 

T  we have dT/dR=0, which gives 
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This choice of optimal real-space cutoff gives the following optimal time 
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When optimized it is equally divided between real and reciprocal space 

parts  calculation and it grows as N3/2 

Now introduce the following dimensionless parameter 
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Factor of 2 is included in the definition   of     so that     corresponds to 

integer cutoff i.e. maximum value of (l2+m2+n2)1/2 

K K



With the above definition optimized value of cutoff becomes 
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To get an estimate we assume p = 2. This gives exp(-p) = 5.2x10-5 
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Break the sum in two parts each of which should converge 

rapidly 
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Particle-Mesh Ewald Method 

The first part should f(r)/r goes to zero very fast beyond some cutoff 

R so that  the summation up to the cutoff is a good approximation to 

this contribution to the electrostatic potential 

 

The second part (1-f(r))/r is a slowly varying function for all r, so that 

its Fourier transform can be be represented by only few k-vectors 

within the cutoff K. This permits an efficient computation of this part in 

reciprocal space 



Particle Mesh based approaches rely on the use of fixed cutoff on the 

direct space sum together with an FFT based approximation of the 

reciprocal space sum that scales as N log(N) 
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In terms of these reciprocal part of the energy is written as 
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Fourier transform of which is given by  

As discussed earlier, products in reciprocal space correspond to 

convolutions in real space. So the reciprocal component of the 

electrostatic potential is due to the original charge distribution (r) 

convoluted by a Gaussian smearing function (r) 



Performing Fourier transformation in the reciprocal space by FFT 

routines involves following complicacy 

Charge assignment: The point charge with continuous coordinates 

have to be replaced by a grid based charge density, since FFT is a 

discrete and finite transformation. 

Solving Poisson’s equ: Poisson's equation for the discrete charge 

distribution has to be solved by FFT. However, It is not obvious nor true 

that the best grid approximation to the continuum solution of the 

Poisson equation is achieved by using the continuum Green function. 

Force assignment: Once the electrostatic energy has been obtained 

from the solution of Poisson's equation the forces have to be calculated 

and assigned back to the particles in our system. The procedure of 

assigning the forces calculated on the mesh back to the actual particles 

can -under certain circumstances-lead to unwanted violations of 

Newton’s third law. 

PME implementations 



Charge assignment 

The purpose of the charge assignment is to substitute the actual charge 

density of point particles with a mesh based charge density. Consider 

first 1-d case: Define an even function W(x) such that the fraction of 

charge which is assigned to the mesh point xp due to unit charge at 

position x is given by W(x-xp). If  the charge density of the system is 

(x), then the mesh based charge density M can be written as 

convolution 
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h=L/NM is the spacing of grid points and NM is the number of grid 

points, xp are the mesh points with p = 0, 1, …NM-1 

Three dimensional charge assignment function W(r) can be written as           

W(r) =  W(x)W(y)W(z)    



Sketch of the 1-d charge assignment. A 

suitable fraction of a charge residing at 

some position within the interval [0:L] is 

assigned to its five nearest grid points of 

an 8-mesh. The fractions (gray) are 

determined by a charge assignment 

functions( dashed curve).  
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In three dimension mesh charge density can be written as 



Function W should have the following properties: 

Charge conservation: the fractional charges of one particle, which 

have distributed to the surrounding grid points, sum up to the total 

charge of the particle. 

Finite and if possible small, support (essentially the range of values 

for which the function is non-zero), since the computational cost 

increases with the number of mesh points among which the charge of 

each particle is distributed.   

Localization of discretization errors: inaccuracies in the force 

between two particles due to the discretization should become small 

with increasing particle separation. 

Large degree of smoothness: the fractional charge of particle I which 

is assigned to some mesh point xp should be smoothly varying function 

of the position of the particle i.  

Minimization of aliasing errors: the charge assignment function 

should decay sufficiently rapidly in the Fourier space 



Solving Poisson Equation 

Recall the Fourier space contribution to the electrostatic energy   

1 1 1 ( )
( ) ( ) ( ) ( )

2 20
j

ik r
j k

U q g k k k e q r
q j jVj k j

  
 
   
 
 


 



In PME implementation it is assumed that the above equation is valid 

for the discrete case also with the charge density (k) replaced by the 

Fourier transform of the mesh based charge density 
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Fourier transforming gives 

Mpr             is the sum over three dimensional mesh in real space and the k-

vectors are from the corresponding Fourier space mesh. In this scheme 

continuum Coulomb Green function is best accompanied by a Lagrange 

interpolation scheme for the charge assignment. 



Charge assignment scheme by Essmann et. al 

Consider a single term in the Fourier sum   i
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e
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This term can not be used in a discrete Fourier transform because r does 

not, in general correspond to a mesh point. However, we can interpolate 

             in terms of values of the complex exponential at mesh points 
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As in the earlier case consider 1-d sysetm: x varies between 0 and L 

and  there are M equidistant Mesh points in this interval. The particle 

coordinates xi is located between mesh points [Mxi/L] and [Mxi/L]+1 

where […] denotes the integer part of the real number. Let us denote  

ui = Mxi/L.  
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Then we can write order-2p interpolation of the exponential as 

W2p are the interpolation coefficients. Strictly speaking the sum over j 

contains only M terms. To account for the periodic boundary conditions, 

we have written it as -<j< . For an interpolation of order 2p only the 

2p mesh points nearest to xi contributes to the sum. For all other points, 

W2p vanish. Fourier transform of the total charge density now becomes 
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Above expression can be viewed as a discrete FT of a meshed charge 

density 

 

W2p act as charge assignment coefficients  

With the Lagrangian interpolation the exponential can  

be written as   

JCP 103, 8577 



Reciprocal part of the Coulomb energy is given by 



B-spline interpolation 



Back-interpolation 

Back interpolation is done in a similar way as the distribution of charges 

to the mesh via some assignment function W. The force on a particle i is 

given by 
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Optimal CPU time is achieved at the smallest cutoff and 5th order 

interpolation 



RMS fluctuation in total energy is t2, where t is the time step. Direct 

sum cutoff is 8 Å and a cubic interpolation for the Coulombic 

reciprocal sum. 



Cell Multipole Method 
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Structure of water 

Quantum Mulliken charges averaged from cluster solvation in water dielectric, single point 

6-311g** DFT=Becke_3_Parameter/HF+Slater+Becke88+PW91+PW-GGAIIC (B3GGA-II) 

 

LMP2 charges 

Charges:   H = 0.36433  O = -0.72866 

 

For TIP3P water 

H=0.417 

O=-0.834 

For SPC/E water 

H=0.4238 

O=-0.8476 
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Structure of Liquid water 






