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Complexity of Force Calculations

O Complexity is defined as how a computer algorithm scales with the
number of degrees of freedom (particles)

O Number of terms in pair potential is N(N-1)/2 ~ O(N?)
O For short range potential you can use neighbor tables to reduce it to
O(N)
* (Verlet) neighbor list for systems that move slowly

 Dbin sort list (map system onto a mesh and find neighbors from
the mesh table)

O Long range potentials with Ewald sums are O(N?®?) but Fast Multipole
Algorithms are O(N) for very large N.



Comparison of timing for various non-bond computation
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Radial Distribution Function

O Radial distribution function, g(r)
* key quantity in statistical mechanics

* Gives the probability of finding a pair of atoms a distance r
apart,relative to the probability expected for a completely
random distribution at same density

O Definition

- Number of atoms at
p(r)dr L— r in actual system
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Various thermodynamic quantities in terms of g(r)

Ensemble average of any pair function can be expressed in terms of
g(r) as follows

<a(ri,rj)>:\% dr dr. g(r r. )a(r r. )

For example we can write the energy as (assuming pair-wise
additivity

E =X uc (1 )+NP r[47zr2u(r)g(r)



Simple Long-Range Correction

O Approximate distant interactions by assuming uniform
distribution beyond cutoff: g(r) =1r>r_,

O Corrections to thermodynamic properties
* Internal energy Expression for Lennard-Jones model
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* Chemical pOtentlaI For r/c = 2.5, these are about

5-10% of the total values
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Coulombic Long-Range Correction

O Coulombic interactions must be
treated specially
- very long range
 1/r form does not die off as quickly as
volume grows

ytail =¥Oodru(r)47zr2
* Tail corre&ion diverges unless u(r)
decays faster than r3

S0 we can not use truncation plus long
range correction for Coulombic and
dipolar interactions

O Methods
 Full lattice sum (Ewald summation)

 Treat surroundings as dielectric
continuum
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Ewald Sum (Frenkel + Smit, Ch 12)

Consider a system of N positively and negatively charged particles in a
volume V (V=L5).

Assume charge neutrality 2 =0

Coulomb energy of this N-particle system is given by

Ucoul = z . (1)
=1

O(r,) 1s the electrostatic potential at the position of 10on 1

q.
o(r:) = ZZ

= n|

r +nL‘
1

For example image correspond to [n| =0 1s n =(0,0,0); |n|=1 correspond
to n=(xL,0,0) n=(0,£L,0) n=(0,0,%xL)



The prime on the summation indicates that the sum 1s over all periodic
images n and over all particles j, except j =1 1f n=0. The sum 1s
conditionally convergent. : it contains a mixture of positive and negative
terms Separately both the positive and negative terms form a divergent
series. The sum of a conditionally convergent series depents on the
order in which its terms are considered.

m

[
Aseries Y an is said to converge conditionally if , Zﬂ " exists and is a finite

n={
[ A
number (not co or —o0), but Eﬂlﬂ.n |=na.

A classical example is given by

1 1 1 1 -
1-g+3-7+t5- =L

ﬂ--l—l

n=1

which converges to In(2) but is not
absolutely convergent
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Now we have three contribution

The contribution to the electrostatic potential at point r; due to a set of
screened charges can easily be computed by direct summation because
the electrostatic potential due to screened charge is a rapidly decaying
function of r. A Gaussian charge distribution of following form is
Commonly used

g’ 2,2
p(r)= 3/26Xp(—a )



Review of Basic Electrostatics

O Force between charges F= %f

O In terms of electric field F(r) r: oL E(r)
O Static electric field satisfies
V- E(r) = 47zp(r)
VxE(r)=0
O Charge density p(r)
- for point charge g,: p(r)=0g,0(r)
O Electrostatic potential
- zero curl implies E can be written  E(r) =—V¢(r)
* potential energy of charge g, at r, relative to position at infinity

u(r) = gy (r)

O Poisson’s equation

) V¢ =—4np



For a single charge z at the origin the solution of this equation 1s the
Coulomb potential

pr)=—"*_

uyald
For a collection of N point charges we can define a charge density

p(n)= > q.50r-1)

1=1

Potential at point r can be written as

N g.
Hr)= x !
i:147zr—ri‘

Fourier transform allows us to cast these equations in a different
form.Let us consider a periodic system with a cubic box of length and
volume V. Any function {(r) that depends on the coordinates can be
written as a Fourier series



f()= ST Relkr

| =00

Where k=(2r/L)l with 1=(1,,1,,1,) are the lattice vectors in Fourier
space.The Fourier coefficients f(k) are calculated using

f (k) = [47r2drf (r)e—1K T
Poisson’s equation in Fourier space takes the following form
~V20)=-v2 §x g 0eikT
Vi
=y k2j (elkt
Vk
If take the following form for Fourier space charge density

p(r>=\%%5(k)eik-r



Poisson equation in Fourier space takes the following simple form
k24 (k)=475(K)
For example, to find the solution for Poisson’s equation for a point

charge of strength z at the origin, we have to perform the Fourier
transform of a delta function

p(k)=fy drzs(r)e—tkT

=7

Remember the following representation of the delta function

5(r):%j&eik'rdk



So the solution for Poisson’s equation becomes

¢ (k) 47Z'Z

Solution for a unit charge (often called Green’s function)

~n\_ 4r
g(k) =2
Now for a collection of point charges with charge
density given by () = z q.5(r—r,)
i=1

the electrostatic potential 1s given by

N .
pk)= jvdriglqié(r - ri)e—lk.r

N —ik-
_ § ge ik-r
i=1
So 1n Fourier space solution of Poisson’s equation 1s obtained by

multiplying g(k) with p(k)

6 (K) =G () p(K) with



Convolution Theorem (Arfken Chapter 15)

If we have a function f,(x) which is the convolution (*) of two other
functions 1,(x) and £5(x)

fL(0)=f,(0% f4(x)= (x) fa(x— X )dx

1
Jarl 2

Then the Fourier coefficients of these functions are related by a simple
multiplication

f, (€)= £, () f(K)

This 1s useful when we have a charge distribution that does not
consist of simple point charges, but a more diffusive distribution

P =75~ )=[dr () pp(r—r)

v(1) 1s the shape of the single charge distribution



The solution of Poisson’s equation for such charge
distribution becomes

#(K)=g(K)y(K)pp(k)



Ewald Sum

O We want to sum the interaction energy of each charge in the central

volume with all images of the other charges
 express in terms of electostatic potential

Us=% D, Gig(n)

charge i
in central
volume

 the charge density creating the
potential is

p(n)= 2, 2. 4;6(r)

n,image j inn
vectors

- Zqué(‘r —(rj + nL)D
——
* thisisa periocjiic function (of period L),

but it is very sharp
Fourier representation would never converge




Ewald Sum: Fourier 1.

O Compute field instead by smearing all the charges

T o

n_j

\

includen=0 Large o takes p back
to & function

O Electrostatic potential via Poisson equation
- direct space form V2¢(r) = —4zp(r)
* reciprocal space k%¢(k) =4zp(k)
O Fourier transform the charge density »
oK) = \% J‘dre—ik-r (1) ay=+ | f(x)cos(2znx/L)dx
\

-L/2
+J_L
. 1 -
1 iker; k2 /4q by =< | f(X)sin(2znx/L)dx
=3 que e 4
J



Charge density in the Fourier space

p(K) = f,dre=1KT p(r)

_ 3/2 2
:jvdre—'k'r I;' zq.[ﬁ} exp —a‘r—(r.+nL)‘
j=in iz J
i 3/2 2
— d Ik-l‘ ] g . ‘ . ‘
[dre Jzﬂqj(ﬁj exp —ar -t
- ge  Jexp-)

With the above charge density in Fourier space Poisson’s equation
becomes

k2p(k) = 470(K)

a; N —kr 2
p)="7 3 q.e Jexp(= )



O Invert transform to recover real-space potential
OEDN (L

k=0

_Zz4ﬂqj ik(r=r}) k2 /4a

k;tO J

* In principle requires sum over infinite number of wave vectors k
* but reciprocal Gaussian goes to zero quickly if « is small



O The electrostatic energy can now be obtained
- for point charges in potential of smeared charges

U, =%ZCIi¢(ri)

product of
B A\ —k2/4a 0i9; k(i =r)) / Identical sums
PR a
k=0 i, ]
47N k214
:% 12 € a‘p(k)‘
k=0

1 —ik
pl)= Dae
J

O Two corrections are needed
» self interaction
* correct for smearing



Ewald Sum. Self Interaction 1.

O In Ewald sum, each point charge is replaced by smeared
Gaussian centered on that charge

» this Is done to estimate the electrostatic potential field

O All point charges interact with the resulting field to yield the

potential energy J

 This means that the point charge *
Interacts with its smeared
representation X

* We need to subtract this




Ewald Sum. Self Interaction 2.

O We work in real space to deal with the self term
* Poisson’s equation for the electrostatic potential due to a single

smeared charge
VE4(r) = ~4zp(r) p(r)=aj(a/7)" exp [‘“‘r T ﬂ
In Spherical coordinate with the Gaussian charge density

_10%rg(r) _ 47p(r)

r orl
Integration by parts -9 r¢(r) drar P(r)
Q0
3/2
:_zﬂqi{ﬁJ ojodrzexp(—ozrz)
Q4 r
o 3/2
— —2qi[_] exp(—ar?)
T



Second partial integration gives

3/2
] ?dr exp(—arz)

o) =25,
7T 0
=(q; erf (var)
Where the error function is defined as

erf (x) = %;j)(exp(—u 2)du

So the potential at point r due to the Gaussian charge 1s
qg.
#(r)=-Lerf(var)
r
¢(r) at r=0 1s the self-term to be subtracted

Hr=0=2q |



Ewald Sum. Self Interaction 2.

So the self-interaction contribution to the total energy is

self 2 qu¢(0)

:(;) ijqj

Independent of
configuration



Ewald Sum. Real space contribution

O We add the correct field and subtract the approximate one to
correct for the smearing

Agi(r)=¢P ()47 (r)

d]

r—r;

d]

r—r,

J

J

q.
_ 1 erf
\r‘rj\

erfc(\/ﬂr—

(@\r — T \)
rj\)

J\J\

1

A

O This field is short ranged for large o (narrow Gaussians)

* can view as point charges surrounded by shielding countercharge
distribution



Ewald Sum. Smearing Correction 2.

O Sum interaction of all charges with field correction
* convenient to stay in real space
 usually « is chosen so that sum converges within central image
AU =33 > qiAg;(r;)

n i#j
:%quir_—?jerfc(«/arij)
ni=j 'l
O Total Coulomb energy
Uc :Uq(a)_uself (a)+AU(«)

* each term depends on ¢, but the sum is independent of it
If enough lattice vectors are used in the reciprocal- and real-space sums



Choice of parameters

Real space part of the energy involves evaluating
(consider a'?= o

=22 > aiAgi(r)

n i#j

1zzq ) erfc(«/_r )

n i#j 'J

To ensure convergence of the real space part we need to choose o such
that erfc 1s small at the real-space cutoff R. Suppose we specify small to
be exp(-p). So p controls the accuracy. For large values of argument erfc
behaves as exp(- a’r?). SO we demand

a’r’=p

or a=""?/R (1)

In Fincham notation o = o2



For reciprocal space we need to compute the following

:%Zqi¢(ri)

B Ar\ K2 14a 0iq; oK (i =T})
2 12 sz k
k=0
AV ok 14
E K2 “lp (k)‘
k=0

The rate of convergence is controlled by the factor exp(-k?/4 a?). Like
before if we require the terms to have the value exp(-p) at the reciprocal
cutoff K, then we have
p=K?/4 o
or K=2ar"?=2p/R (2)
Equ. 1 and 2 specify the choice of parameters a and reciprocal cutoff K
once the accuracy parameter p and real space cutoff R have been chosen



Time estimate for Ewald summation

The number of 10ns within the cutoff sphere 1s

47/3R’n, n is the number density
Each of the N 1ons interacts with the other 1ons in the surrounding
cutoff sphere , but each pair interactions needs to be considered only
once. Thus

Ty=1/2 N 47/3R%nt,

The value of reciprocal space within a cutoff K 1s
4r3_478p3
3 3 R3
The reciprocal-space points are given by k=2n/L(l,m,n), where I, m, n
are integers. The volume of each reciprocal point is (21t/L)’. The
number of reciprocal points with the cutoff K is given by

3 3
478p3 L° _4x (EJ N Where n=N/L3

This grows as N as the density of points in k-space
increases with system



For each k-points a sum over over N ions needs to be performed and the

execution time IS
. zzﬂ(gf N’
F 23\, nR3F

So the total execution time for real space and k-space summation Is

given by ;
2
T =147 NnR3 +(pj N
23 R (r nR3 F

For fixed p and R, Ty varies as N and T varies as N?

To find the optimal value of R which minimizes the total execution time
T we have d1/dR=0, which gives

1/2
RoPT :[%




This choice of optimal real-space cutoff gives the following optimal time

t_t

T =2T_=2T :4_”N3/2(EJ t

3/2
OPT ~“'R™°F~ 3 2 |

1/2
|

When optimized it 1s equally divided between real and reciprocal space
parts calculation and it grows as N3

Now introduce the following dimensionless parameter

R=R

a=al 12

kKL K=P_P 57
27T R T

Factor of 27 is included in the definition of sk that correspors to
integer cutoff i.e. maximum value of (12+m?+n?)!/2



With the above definition optimized value of cutoff becomes

/6
R Z(E]ll e e
OPT |7 qg

To get an estimate we assume p = r%. This gives exp(-p) = 5.2x107

.This g1ves _
& =x/R

73

Al K|
I



Particle-Mesh Ewald Method

Break the sum in two parts each of which should converge
rapidly

1_f() 1-f()

I I I

The first part should f(r)/r goes to zero very fast beyond some cutoff
R so that the summation up to the cutoff is a good approximation to
this contribution to the electrostatic potential

The second part (1-f(r))/r is a slowly varying function for all r, so that
its Fourier transform can be be represented by only few k-vectors
within the cutoff K. This permits an efficient computation of this part in

reciprocal space



Particle Mesh based approaches rely on the use of fixed cutoff on the
direct space sum together with an FFT based approximation of the
reciprocal space sum that scales as N log(N)

We have reciprocal part of the electrostatic energy

A

k)=~ "+ = eXp(——)\ (k)\
k¢0k
_ N Ik-r.
Fourier space charge density oK)= j\,dre—'k'Ir o(N= = qje J
j=1
Recall that Fourier transformed Green’s function gk)==£

7 (K) =exp(—k2/4a2)



In terms of these reciprocal part of the energy is written as

1 ik-rj 1 k)
q Z%QJ[Vkiog(k)y(k)p(k)e J—Z%qu (rj)

ik-r.
= 20Ky Kk)pke
Vk#0

1s the electrostatic potential
due to the 2™ term in the
identity

where ¢(k) ()=

Fourier transform of which is given by

Q) =37 K5 k)

As discussed earlier, products in reciprocal space correspond to
convolutions 1n real space. So the reciprocal component of the

electrostatic potential 1s due to the original charge distribution p(r)
convoluted by a Gaussian smearing function y(r)



PME implementations

Performing Fourier transformation in the reciprocal space by FFT
routines involves following complicacy

JCharge assignment: The point charge with continuous coordinates
have to be replaced by a grid based charge density, since FFT 1s a
discrete and finite transformation.

Solving Poisson’s equ: Poisson's equation for the discrete charge
distribution has to be solved by FFT. However, It 1s not obvious nor true
that the best grid approximation to the continuum solution of the
Poisson equation 1s achieved by using the continuum Green function.
JForce assignment: Once the clectrostatic energy has been obtained
from the solution of Poisson's equation the forces have to be calculated
and assigned back to the particles 1n our system. The procedure of
assigning the forces calculated on the mesh back to the actual particles
can -under certain circumstances-lead to unwanted violations of
Newton’s third law.



Charge assignment

The purpose of the charge assignment is to substitute the actual charge
density of point particles with a mesh based charge density. Consider
first 1-d case: Define an even function W(x) such that the fraction of
charge which is assigned to the mesh point x, due to unit charge at
position x is given by W(x-x,). If the charge density of the system is
p(x), then the mesh based charge density p,, can be written as
convolution ]
P (Xp) =, T (xp X000
h=L/N,, 1s the spacing of grid points and N,, is the number of grid
points, X, are the mesh points withp =0, I, ...N,,,

Three dimensional charge assignment function W(r) can be written as
W(r) = WE)W(y)W(2)



Sketch of the 1-d charge assignment. A
suitable fraction of a charge residing at
some position within the interval [0:L] 1s
assigned to its five nearest grid points of
an 8-mesh. The fractions (gray) are
determined by a charge assignment
functions( dashed curve).

In three dimension mesh charge density can be written as

oy (rp) :higIL?’der(rp —1)po(r)

1 N
h_3 > qW(rp—r)



Function ¥ should have the following properties:

»Charge conservation: the fractional charges of one particle, which
have distributed to the surrounding grid points, sum up to the total
charge of the particle.

»Finite and if possible small, support (essentially the range of values
for which the function 1s non-zero), since the computational cost
increases with the number of mesh points among which the charge of
each particle 1s distributed.

»Localization of discretization errors: inaccuracies in the force
between two particles due to the discretization should become small
with increasing particle separation.

»Large degree of smoothness: the fractional charge of particle I which
1s assigned to some mesh point x, should be smoothly varying function
of the position of the particle 1.

»Minimization of aliasing errors: the charge assignment function
should decay sufficiently rapidly in the Fourier space



Solving Poisson Equation

Recall the Fourier space contribution to the electrostatic energy

Ik-r.

1 I _1gq,0)
“Iyall 5 armske =220 ()
" 27|V Zo 25" ]

In PME implementation it 1s assumed that the above equation is valid
for the discrete case also with the charge density p(k) replaced by the
Fourier transform of the mesh based charge density



Fourier transforming gives

oK)= s p (rp)e P
M I‘pel\/l M P

rp€Mis the sum over three dimensional mesh in real space and the k-
vectors are from the corresponding Fourier space mesh. In this scheme
continuum Coulomb Green function is best accompanied by a Lagrange
interpolation scheme for the charge assignment.



Charge assignment scheme by Essmann et. al

Consider a single term in the Fourier sum qie_lk'ri

This term can not be used 1n a discrete Fourier transform because r does

not, in general correspond to a mesh point. However, we can interpolate
_ in terms of values of the complex exponential at mesh points

e—lk-ri

As 1n the earlier case consider 1-d sysetm: x varies between 0 and L

and there are M equidistant Mesh points in this interval. The particle

coordinates x; 1s located between mesh points [Mx,/L] and [Mx,/L]+1

where [...] denotes the integer part of the real number. Let us denote

u. = Mx/L.

—1k, X o0 —ik, Lj/M
XN ~ i X
_z sz(uI e

j=—0

€



Then we can write order-2p interpolation of the exponential as

—1Ky X 00 —ik, Lj/M
XN ~ i X
_z sz(uI e

j=—

€

W,, are the mterpolation coefficients. Strictly speaking the sum over j
contains only M terms. To account for the periodic boundary conditions,
we have written it as -oc<j< oc. For an interpolation of order 2p only the
2p mesh points nearest to x. contributes to the sum. For all other points,
W,,, vanish. Fourier transform of the total charge density now becomes

N ik, Lj/M
pr =0 x W (u-je *
K i=l|j:—w 2p° 1

Sik Lj/M N
-xe % = qW, (u.—J)



& 1=1 j:—oo 2p
—Ik LJ/M N
=xe x W, (U -1J)
| =1

Above expression can be viewed as a discrete FT of a meshed charge
: . N :
density o= qW_ (u.—j)
i—1 1 2p° |
W,, act as charge assignment coefficients

With the Lagrangian interpolation the exponential can
be written as

o

m, m
!xa, i, ) %;\-:E_-f_ H;zp{uﬂ—ai} exp I.2'rrf K.

¥

exp 2

(3.5)
JCP 103, 8577



Reciprocal part of the Coulomb energy 1s given by

, R T
< | E exp( — m*m?/3?)
== = . 5
rec rec 2 T L M0 m-

XE(Q)(my,mqy my)F(O)(—my,—nmy,—my)

(Kol Kol Kl

:_E > D F N e (my my ms)

”’1_0 ms=0 my=0

XF(Q)(my.my,my)-K{KyKy-F~HO)(my,my.m3)
(Ko K1 K5

:_E E E O(my,my,mx)

ml—(} myr=0 my=0

AP ocx Q) (1,15 ,m15), (3.10)



B-spline interpolation

| m;
2i h—u ) bi(m; E M, (u,—k)
_ i k=

exp

m;
2mi — k

exp e
i

where b,(m;) 1s given by
bim;)=exp(2mi(n—1)m;/K;)

n—2

x| > M, (k+ [ yexp(2mimk/K;)
k=0

—1
(4.4)



Back-interpolation

Back interpolation 1s done 1n a similar way as the distribution of charges
to the mesh via some assignment function W. The force on a particle 1 1s
given by

Fi:qi 2 E(rp)W(ri_rp)

r.eM
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FIG. 2. Comparison of the CPU-times needed for the conventional vs PME
calculation of the reciprocal sum. (a) CPU-time for the conventional calcu-
lation of the reciprocal sum as a function of system size at the three levels of
accuracies described in the text; (b) CPU-time required for the same level of
accuracies in the PME approach. For comparison the CPU-time for the
calculation of the direct sum using a 9 A cutoff is also shown.



TABLE II. Timing results for the 18.77 A water box for different choices of grid density and interpolation order
compared with timing results for standard Amber3a with the same cutoff. The numbers for the PME calcula-
tions give the total CPU-time for the direct space calculations (including the truncated dispersion interactions)
plus the reciprocal space calculations. The total rms force error for the PME calculations was fixed at X107,
The numbers in parenthesis indicate the number of grid points 1n each of the three dimensions.

Cutoff Amber3a Direct sum Ath-order Sth-order 6th-order
(A) time time total time total time total time
6.0 1.38 l.66 5.75 (60) 4.75 (48) 4.81(40)
0.5 1.78 2.11 5.42 (54) 4.95 (45) 5.00(36)
7.0 2.28 2.64 5.09 (48) 5.06 (40) 5.42(32)
7.5 2.91 3.27 5.49 (45) 5.37 (36) 5.95(30)
8.0 3.59 4.06 5.84 (40) 5.94 (32) 6.61(27)
8.5 431 4.82 6.72 (40) 6.67 (30) 7.47(25)
9.0 5.14 5.84 7.36 (36) 7.61(27) 8.20024)
9.5 6.10 0.96 8.29 (32) 8.62 (25) 9.12(20)

10.0 7.24 B.16 9.32 (27) 0.68 (24) 10.42{20)

Optimal CPU time is achieved at the smallest cutoff and 5" order
interpolation



TABLE IV. Energy fluctuations for a 40 A water box as a function of time step, neighbor list update, grid
density, and different treatments of long-range dispersion interactions. The quantity { A E2) Y2/ ( AKE?) 12 refers
to the fluctuations of the total energy divided by the fluctuations of the kinetic energy. The quantity
{NE*Y2/(E) refers to the fluctuations of the total energy divided by the total energy.

Time List Dispersion (AESHY (AEHVY
step (fs) update (fs) E4ir Nfft interactions NffiD (AKE?*)1? {E)
2 2 5%10” 24 PME 16 1.0x1072 6.6% 1077
1 1 Sx10” 2 PME 16 2.4x107° 1.6X1077
0.5 0.5 5%10” 2 PME 16 6.5%107* 43x%107"
2 2 5x107° 2 PME 16 1.0x1072 6.6% 1073
1 1 5%107° 2 PME 16 43%107° 29%1077
0.5 0.5 5x107° 24 PME 16 31x107? 20x1073
2 2 5%10” 2 truncate 1.0x% 1072 6.6% 1077
| | ax10™ 2 truncate 4.7%107° 3.1%x 1077
0.5 0.5 5%10” 2 truncate 3.9x1077 26%107°
0.5 0.5 Sx10” 16 PME 16 8.0x107* 53%x107¢
| 5 5%10” 2 PME 16 2.5%1073 1.7% 1077
0.5 2.5 5x10” 2 PME 16 6.5% 107 43% 1078
1 1 5x107° 16 truncate 421073 2.8% 1077
| 5 sx107¢ 16 truncate 7.9% 1073 5.2% 1073
0.5 0.5 5x1078 24 PME 16 6.1x10™* 4.0% 107"

RMS fluctuation in total energy is 0t2, where ot 1s the time step. Direct
sum cutoff is 8 A and a cubic interpolation for the Coulombic
reciprocal sum.



Cell Multipole Method
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Structure of water

For TIP3P water
H=0.417
0=-0.834

LMP2 charges

For SPC/E water
H=0.4238
0=-0.8476

Quantum Mulliken charges averaged from cluster solvation in water dielectric, single point
6-311g** DFT=Becke 3 Parameter/HF+Slater+Becke88+PW91+PW-GGAIIC (B3GGA-II)

Charges: H =0.36433 O =-0.72866
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TABLE V1. Physical characteristics of different water simulations.

Water Num Cutoff Coulomb Dispersion E ot Density Diff. const.
model waters (A) interactions interactions (kcal/mol) (g/em®) (10~ %cm?/s)
TIP3P 216 8.5 truncate truncate —9.7 0.99 5.3
TIP3P 216 8.0 Ewald truncate —9.5 0.97 5l
TIP3P 216 9.0 PME truncate —9.5 0.97 5.1
TIP3P 216 8.0 PME truncate —9.5 0.97 5.1
TIP3P 2038 8.0 PME PME —9.6 0.98 5.8
sPC/E 216 8.5 truncate truncate —11.3 1.00 2.5
SPC/E 216 8.0 Ewald truncate —11.1 0.98 24
SPC/E 216 8.0 PME truncate —11.1 0.98 2.3
SPC/E 216 9.0 PME truncate —11.1 0.99 2.7
SPC/E 216 8.0 PME PME —11.2 1.00 2.3
SPC/E 216 9.0 PME PME —11.2 1.00 2.5
SPC/E 2038 9.0 PME truncate —11.1 0.99 2.6
SPC/E 2038 8.0 PME PME —11.2 1.00 2.6
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