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• Energy and Forces 
Etotal = Evalence + Enon-bond 

Potential 

Evdw

D0

R0

Rij

Repulsive

Atractive

Non-Bond Force Field 
Coulomb and van der Waals 
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Potential Energy Function 
 

Intramolecular (internal, bonded terms) 
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Intermolecular (external, nonbonded terms) 
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Vbond = Kb b − bo( )2

1 2 

3 4 

 

Vangle = Kθ θ −θo( )2

 

Vdihedral = Kφ (1+ (cosnφ −δ))

Intermolecular interactions between bonded atoms 
   1,2 interactions: 0 
   1,3 interactions: 0 
   1,4 interactions: 1 or scaled 
    > 1,4 interactions: 1 



Bond Energy versus Bond length
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Chemic al type Kbond bo

C-C 100 kcal/mole/Å2 1.5 Å
C=C 200 kcal/mole/Å2 1.3 Å
C=-C 400 kcal/mole/Å2 1.2 Å 

Vbond = Kb b − bo( )2



Dihedral energy versus dihedral angle
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Vdihedral = Kφ (1+ (cosnφ −δ))

δ = 0˚ 



qi: partial atomic charge 
D: dielectric constant 
ε: Lennard-Jones (LJ, vdW) well-depth 
Rmin: LJ radius (Rmin/2 in CHARMM) 
Combining rules (CHARMM, Amber) 
    Rmin i,j = Rmin i +  Rmin j  
    εi,j = SQRT(εi * εj ) 
    

Intermolecular parameters 
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Lennard-Jones Energy
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Series1

Rmin,ij

εi,j
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Alternate intermolecular terms 

 

VHbond = εHB
RHB,A− H
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van der Walls  
Dispersion forces 

Various kind of non-bond interactions 



A simple model to explain dispersive interaction was proposed by 
London using quantum mechanics. The dispersive force is due to 
the instantaneous dipoles which arise during fluctuations of 
electron clouds. An instantaneous dipole in a molecule can in turn 
induce a dipole in the neighboring atoms, giving rise to an 
attractive interactions. 

Dispersive Forces (London dispersive forces, 
van der Waals) 

VVDW = -a/r6        (Attractive force) 

Lennard-Jones Potential:  V(r)LJ = -
(a/r6 – b/rm) 



+q -q -q +q 

r 

The negative charge performs simple harmonic motion with angular 
frequency ω along the z-axis about the stationary positive charge. 
Think about Hydrogen atom (electron moving around proton). See 
Chaikin and Lubensky for an alternative derivation.  
If the force constant of the oscillation is k and if the mass of the 
oscillating charge is m, then the potential energy of an isolated Drude 
molecule is 1/2kz2, where z is the separation of the charges and ω is 
related to the force const. ω=√k/m 
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Energy of the system is given by En = (n+1/2) ħω. The ZPE is 1/2 ħω 



We now introduce a second Drude molecule, identical to the first, 
with positive charge also located on the z-axis and an oscillating 
negative charge. When the two molecules are infinitely seperated 
they do not interact and the total ground state energy of the system 
is just twice the ZPE ~ħω. The instantaneous dipole of each 
molecule is qz. As they are close interaction arises due to the 
dipolar interaction given by (r is the separation of the molecules) 
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The equation can be solved by making following transformation 
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With the above transformation the above equation becomes 
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This is the Schrodinger equation for two independent oscillators 
with frequencies given as follows 
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The ground state energy of the system is just the sum of the ZPE of  
two oscillators 
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The interaction energy of the two oscillators is the difference between 
this ZPE and the energy of the system when the oscillators are 
infinitely separated 
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The force constant k is related to the polarisability of the molecule as 
follows: suppose a single Drude molecule is exposed to an external 
electric field E. In the electric field, a force qE acts on each charge (in 
opposite directions as the charges are of opposite sign). This force causes 
the charges to separate and equilibrium is reached when the restoring 
force due to the stretching of the bond (kz) is equal to the electrostatics 
force: qE =kz 

This separation of the charges is equivalent to a static dipole given by 

Eαµ === kEqqzind /2



Thus the polarisability is given by 

kq /2=α

So the interaction energy is given by 
4

( ) 2 62(4 )0
v r

r
α ω
πε

= −


The Drude model only considers dipole-dipole interactions, if 
higher order terms such as dipole-quadrupole etc are included the 
interaction energy can be written as a series expansion 
                 V(r)= a/r6 + b/r8 + c/r10  
 

All coefficients are negative  
 



Dimensions and Units 3. 
Conformal Solutions 

• Lennard-Jones potential in 
dimensionless form 
 
 
 

• Parameter independent! 
• Dimensionless properties must also be 

parameter independent 
– convenient to report properties in 

this form, e.g. P*(ρ*) 
– select model values to get actual 

values of properties 
– Basis of corresponding states 

• Equivalent to selecting unit value for 
parameters 
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Energy conservation in Molecular dynamics 
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We want to derive an expression for the rate of change of  
energy with time dE/dt. First we consider the kinetic energy 
term 
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The potential energy is written as a series of pairwise  
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equals 1 for each pairwise combination i and j. Each term v(rij) is a function of the 
positions of atom i and j (ri  and rj) and we can write 
 

For a given atom i, there will be a total of N-1 terms of the form v(rij) in 
the expression for the potential energy due to the interactions between I 
and all other atoms j. Hence we can write dV/dt as follows 
 

The force on atom I due to its interaction with atom j equals minus the 
gradient with respect to ri or  

Thus the total force on the atom is equal to  

So we have 

Thus dV/dt + dK/dt = dE/dt =0, which imply that energy is constant  



Forces 1. Formalism 
• Force is the gradient of the potential 
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Forces 2. LJ Model 
• Force is the gradient of  the potential 
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Boundary Conditions 

• Small system is simulated to study/mimic the bulk properties 
• Surface effect: a large fraction of the small sample lie on the 

surface. For example for 1000 molecules arranged in 10x10x10 
cube, almost 400 molecules appear on the cube faces. Surface 
molecules/atoms experience different force than in the bulk. 

• Impractical to contain system with a real boundary 
– Enhances finite-size effects 
– Artificial influence of boundary on system properties 
           
          



Solution: Periodic boundary condition 

•The problem of surface effect can be overcome by using. “Periodic 
Boundary Conditions” (PBC). The bounding box is replicated 
throughout space to form an infinite lattice. In the course of simulation 
as a molecule moves in the original box, its periodic images in the each 
of the neighboring boxes  

•As the molecule leaves the central box, one of its image will enter 
through the opposite face. 

•No physical wall at the boundary and so no surface molecules. 



Issues with Periodic Boundary Conditions 

• Suppress fluctuation that have wavelength greater than the 
length of the simulation cell. This could be problem near critical 
point where fluctuation plays dominant role. 

• new artificial correlations 
• It can also affect the rate at which a simulated liquid nucleates 

and forms a solid or glass when rapidly cooled (Honeycutt and 
Andersen 1984) 

• Artifact of PBC can be determined by performing simulations 
using a variety of cell sizes and shape 



Issues with Periodic Boundary Conditions  
• Other issues arise when dealing with longer-range 

potentials 
– accounting for long-range interactions 
– nearest image not always most energetic 
– splitting of molecules (charges) 
– discuss details later 

• Other geometries possible 
– any space-filling unit cell 

• hexagonal in 2D 
• truncated octahedron in 3D 
• rhombic dodecahedron in 3D 

– surface of a (hyper)sphere 
– variable aspect ratio useful for solids 

• relieves artificial stresses 

 

http://www.porter.ucsc.edu/sro/tt/vrml/tr-oc.wrl�
http://www.scienceu.com/geometry/facts/solids/handson.html�




Implementing Cubic Periodic Boundaries 

• How do we handle PBC and the minimum image convention 

– Box origin 
• center of box, coordinates range from -L/2 to +L/2. When a molecule 

leaves a box crossing one of the boundary, its image enters the box and is 
accomplished either by adding or subtracting L to the particle coordinate. 

If (drx[I] > L/2) rx[I]   = rx[I] –  L 
If (drx[I] > -L/2) rx[I] = rx[I] +L 
 

A more convenient way to handle PBC as well as 
 minimum image convention is to use reduce  
(scaled coordinates) in the range (-1/2,1/2) 

– Box size 
• unit box, coordinates scaled by box length 
•   sep[0] = sep[0] – NINT(sep[0]) 
• define NINT(x)   ((x) < 0.0 ? (int) ((x) - 0.5) : (int) ((x) 
+ 0.5)) 
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Implementing Cubic Periodic Boundaries 3 

void periodic_boundary_conditions(int n_atoms, double **h, 

   double **scaled_atom_coords, double **atom_coords) 

{ 

int i, j; 

for (i = 0; i < n_atoms; ++i) { 

      for (j = 0; j < NDIM; ++j) 

     scaled_atom_coords[i][j] -= NINT(scaled_atom_coords[i][j]); 

      atom_coords[i][0] = h[0][0] * scaled_atom_coords[i][0] 

         + h[0][1] * scaled_atom_coords[i][1] 

         + h[0][2] * scaled_atom_coords[i][2]; 

      atom_coords[i][1] = h[1][1] * scaled_atom_coords[i][1] 

         + h[1][2] * scaled_atom_coords[i][2]; 

      atom_coords[i][2] = h[2][2] * scaled_atom_coords[i][2]; 

   }} 



Implementing Cubic Periodic Boundaries 

void scaled_atomic_coords(int n_atoms, double **h_inv, double **atom_coords, 

   double **scaled_atom_coords) 

{ 

   int i; 

for (i = 0; i < n_atoms; ++i) { 

scaled_atom_coords[i][0] = h_inv[0][0] * atom_coords[i][0]  

         + h_inv[0][1] * atom_coords[i][1] 

         + h_inv[0][2] * atom_coords[i][2]; 

      scaled_atom_coords[i][1] = h_inv[1][1] * atom_coords[i][1] 

         + h_inv[1][2] * atom_coords[i][2]; 

      scaled_atom_coords[i][2] = h_inv[2][2] * atom_coords[i][2]; 

   } 

} 



Truncating the Potential 

• For system with pair wise additive interactions force on a particle I 
is computed by all its neighbors. This means for a system of N 
particles we have to evaluate N(N-1)/2 pair interactions. So the time 
needed for evaluation of energy/force scales as N2. This is one of the 
main bottleneck in the simulation field. 

• Bulk system modeled via periodic boundary condition 
– not feasible to include interactions with all images 
– must truncate potential at half the box length (at most) to have all 

separations treated consistently 
• Contributions from distant separations may be important 



Minimum image convention and Truncating the Potential 

These two are same 
distance from central 
atom, yet: 

Black atom interacts 
Blue atom does not 

How do we evaluate force on the red atom in 
the simulation box. Assuming pair wise 
interaction we should include interaction of 
the red atom with all other atoms in the 
simulation box. There are N-1 such term. 
However, we must also include interaction 
coming from images lying in the surrounding 
boxes. That is an infinite number of terms. 
  Minimum image convention 
Construct a simulation box of same size as 
the the original box with the red atom at its 
center. Now minimum image convention 
says that the red atom interact with those 
atoms which lie in this region, that is with 
the closest periodic images of the other N-1 
atoms. 



Truncating the Potential 

Only interactions 
considered 

With the minimum image convention energy/force 
computation involves 1/2N(N-1) terms.This is 
significant for large system size. 
For short range interaction major contribution 
comes from the neighbors close to the atom of 
interest. So use a spherical cutoff to truncate the 
interaction. 
So the red atom interact only with the atoms lying 
inside the cutoff region (2 black and one blue) 

The cutoff distance should be smaller than L/2 to be consistent with the minimum 
image convention 
Thermodynamic properties are different for a truncated potential compared to a non-
truncated case. However, we can apply long range correction to get back 
approximately the non-truncated properties. 
Cutoff introduces discontinuity in the force and energy computation. This has 
serious consequences on the energy conservation and  stability of the simulation 
 

Points to remember 



Truncating the Potential contd 

Potential truncation introduces discontinuity 
– Corresponds to an infinite force 
– Problematic for MD simulations 

• ruins energy conservation 
• Shifted potentials: a constant term is subtracted from the potential at 

all values 
 
 
– Removes infinite force 
– Still discontinuity in force: at the cutoff distance, the force will 

have a finite value which drops to zero just beyond the cutoff 
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Truncating the Potential 
Shifted-force potentials : a linear term can be added to the potential, 

making the derivative to be zero at the cutoff 
 
 
 

– The discontinuity now appears in the gradient, not in the force 
itself. The force goes smoothly to zero at cutoff. 

– The shift makes the potential deviate from the true potential, so the 
calculated thermodynamic properties will be changed 

– True values can be retrieved but is difficult to do so, so rarely used 
in simulation 

 
Eliminate discontinuities in the energy and force by a 

switching  function 
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Truncating the Potential 
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• Lennard-Jones example 
– rc = 2.5σ 
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Potential function is multiplied by a polynomial which is a function of 
distance 
 

Switching function 
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S(r) gradually taper the potential between two cutoff values : it smoothly 
changes its value of 1 to a value of 0 between two cutoff : rl (lower 
cutoff) and ru (upper cutoff) and satisfies the following criteria  
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Zero first derivative ensures that the force approaches to zero smoothly 
at the cutoffs. A continuous second derivative ensures the stability of the 
integration algorithm. 

Switching function contd. 
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Generally ru is taken to be ~ 1 to 2 Å smaller than rc so that atom pairs 
that are initially greater than ru apart do not move closer than ru during 
the time that the NB List is not updated. Common choice is rc= 12 Å, ru= 
10 Å, rl= 8 Å. 



/* Calculate pair interaction. The LJ pair potential is switched off smoothly between r_on and 
r_off. */ 

           one_over_r2_sep = 1.0 / r2_sep; 

              rho_2 = comb_par[id_0][id_1][2] * one_over_r2_sep; 

              rho_6 = CUBE(rho_2); 

              rho_12 = SQR(rho_6); 

              *u_vdw = rho_12 - rho_6; 

             *f_vdw = rho_12 + *u_vdw; 

              four_epsilon = comb_par[id_0][id_1][3]; 

              (*u_vdw) *= four_epsilon; 

              (*f_vdw) *= 6.0 * one_over_r2_sep * four_epsilon; 

              if (r2_sep > r2_on) { 

                  sw1 = r2_off - r2_sep; 

                  sw2 = two_over_gamma_cubed * sw1; 

                  sw3 = sw1 * sw2 * (three_gamma_over_two - sw1); 

                  sw4 = 6.0 * sw2 * (gamma - sw1); 

                  *f_vdw = sw4 * (*u_vdw) + sw3 * (*f_vdw); 

                  (*u_vdw) *= sw3; 
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Cubic Spline 
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Ron = 0 A, Roff = 9 A 
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Switching function contd. 

We can use higher order polynomial also 
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With the coefficients satisfying the previous criteria and that gives  
C0=1, c1=0, c2=0, c3=-10, c4=15, c5=-6 
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Electrostatic interaction is most sensitive to NB cutoff (Roff) since it falls off more slowly 
than vdW. Energy converges at Roff = ~15 A (Ron = 0 A, Rcut=Roff+1A).  

Effect of NB cutoff (216 water molecules) 



Radial Distribution Function 

• Radial distribution function, g(r) 
– key quantity in statistical mechanics 
– quantifies correlation between atom pairs 

• Definition 
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Verlet List 

i 

rc rl 

Particles outside cutoff do not 
contribute to the energy of the 
particle I. 
Exclude those particles from the 
energy computation 
Verlet List: Introduce a second 
cutoff radius rl >rc 
Make a list of all the particles 
within a radius of rl of particle i 
If the maximum displacement of 
the particles is less than (rl -rc) we 
have to consider only the particles 
in this list for the energy/force 
computation 

Update the Verlet list as soon as 
one of the particle is displaced 
more than (rl -rc)  

For MD it is sufficient to have a Verlet list with half the number of 
particles for each particle as long as interaction i-j is accounted for in 

either the list of particle i or that of j  
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rc 

7’ 

rl 

The cutoff sphere and its skin around 
an atom 1. Atoms 2,3,4,5 and 6 are on 
the list of atom 1, but 7 is not. Among 
these only 2,3,4 are within the rc when 
the list is made 

The skin is thick enough such that 
when reconstructing an atom 7, 
which was not in the original list of 
atom 1can not penetrate the rc sphere. 
Atom 3, 4 can move in and out but 
their interaction get counted as they 
are in the original list until the list get 
updated. 

From Allen and Tildesley 



For a periodic system Verlet list has an elegant implementation due to 
Bekker et. al. (Mol. Sim. 14, 137-151, 1995) 
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=

In a periodic system total force on particle i can be written as 

Where the prime denotes that summation is performed over the nearest 
image of the particle j in the central box (k=0) or in one of its 26 
periodic images (or 8 in 2-d). (j.k) denotes the periodic image of 
particle j in box k. Box k is defined by the integer numbers nx, ny, nz 
                                     k = 9nx+3 ny + nz 



As the size of the system increases neighbor list becomes too large to 
store easily 
Also the testing of every pair separation is also very inefficient 
Make the neighbor list using Cell list 

Problem with Verlet List  



Cell Lists or Linked-list  

The simulation box is divided into cells with  size equal to or slightly 
larger than the cutoff rc 
Distribute the particle to the cell according to their position 
Each particle in a given cell interacts with only those particles  in the 
same or neighboring cells 
This scales as N rc 

The simulation cell is divided into 
cells of size rc x rc, a particle i 
interacts with those particles in the 
same cell or neighboring cell (in 2D 
9 cells; in 3D 27 cells) i 

Nc= N/M2 in 2-d 
Nc= N/M3 in 3-d 

# of pair = 9NNc in 2-d 
# of pair = 27NNc in 3-d 

 



         The Cell list is created using the linked list methods: 
Sorting of  atoms to their respective cells 
Two arrays are created (HEAD AND LIST) 
HEAD (head of the chain) array has one element for each cell. This 
contains the identification number of one of the molecules sorted into 
that cell 
LIST (linked list array) contains the number of next molecules in that 
cell. 
HEAD (head of the chain) array element is used to address the LIST 
array element. 
If we follow the trail of linked-list we will eventually reach an 
element of LIST which is zero. This indicates that there are no more 
molecules in that cell and we move on to the head of chain of the next 
cell. 

 
                See Allen and Tildesley for details 
 



void neighbor_lists_period() 

/* Purge neighbor lists. */ 

   for (i = 0; i < n_atoms; ++i) 

      nl_tail[i] = NULL; 

   /* Update cell lists. */ 

   update_cells(period_switch, n_atoms, h, scaled_atom_coords, atom_coords, 

     atom_cells, first, last, phantoms, kc, phantom_skip, nc, nc_p); 

 /* Update positions of phantom atoms. */ 

   update_phantoms(n_atoms, atom_cells, phantom_skip, phantoms, atom_coords); 

 

   /* Loop over central atoms. */ 

   for (i = 0; i < n_atoms; ++i) { 

 

      /* Get attributes of atom i. */ 

      for (k = 0; k < NDIM; ++k) 



Comparison of efficiency of various  cut-off scheme 

See Frenkel and Smit for details 
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