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Introduction (Basic facts and some history)

Molecular dynamics, Various schemes for integration,

Inter and Intra molecular forces, Various ensemble (NVE, NVT, 
NPT, NPH), atomic charge derivation scheme

How to make the simulation efficient (Cell List, Neighbor List), 
Periodic Boundary condition, computing long range interactions

Advanced free energy calculation methods

Monte Carlo simulation 

Application: Nanotube,  graphene, Liquid Crystal, DNA/protein 
simulations
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Molecular Modelling Principles And Applications: Andrew 
Leach, Prentice Hall (2001)
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Web: CCP5 library http://www.ccp5.ac.uk

Acknowledgement: http://www.cheme.buffalo.edu/courses/ce530



Grading:

1. 5-6 Assignments
2. 2 individual assignment (need to do some simulation work)
3. Term paper (on some related topics covered in the course. 

Topics to be discussed with the instructor)
4. One exam to be decided later

Course TA: Dr. Ashok Garai   email: ashok.garai@gmail.com
                   Dr. Sudip Chakraborty email: sudip.hammer@gmail.com 
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Nobel Prize in Chemistry 1998

John A. Pople 
Chemistry,Northwestern University, EvanstonWalter Kohn 

Physics, University of California, Santa Barbara, 

Walter Kohn "for his development of the density-functional 
theory"and John A. Pople "for his development of computational 
methods in quantum chemistry".



Nanotechnology/Nanofluidics



DNA nanotechnology



Self-assembly





Molecular modeling is the science and art of studying 
molecular structure and function through model building 
and computation.
Model building could be as simple as representing 
molecule by hard/soft sphere (beads) , rigid rods, or other 
geometrical shape, sphere/beds connected through springs 
or molecule with full chemical details. 

What is molecular simulation?
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 Molecular model of bio-molecules



Computation can be carried out using following methods:

Molecular  mechanics, molecular dynamics, Monte Carlo, 
Free energy and solvation methods, structure/activity 
relationship (SAR) and many other established procedure.

What is molecular simulation?



Need for Molecular simulation

• There are no general method for a solving complex many-
body problems. Hamiltonian is unknown, until we solve the 
quantum many-body problem! In fact in most cases not 
possible and requires lots of approximations.

• Molecular simulations are the only possible solution for 
such complex many body systems.

• In many cases experiments are limited and expensive. 
Simulations can complement the experiment.

• Simulation can give molecular level understanding even at a 
single molecule level



Simulation Methodology

Semi-empirical 

Give us the phenomena and 
invent a model to mimic the 
problem. 

ab initio methods

Maxwell, Boltzmann and 
Schrödinger gave us the model. All 
we must do is numerically solve 
the mathematical problem and 
determine the properties. 

These two approaches can be combined to make 
what is termed as Multi-scale modeling strategies



“The general theory of quantum mechanics is now 
almost complete.  The underlying physical laws 
necessary for the mathematical theory of a large 
part of physics and the whole of chemistry are 
thus completely known, and the difficulty is only 
that the exact application of these laws leads to 
equations much too complicated to be soluble.”

Dirac,  1929



Time
Multi-scale Modeling strategy

High quality multi-scale simulations
    Quantum Mechanical calculations
    First Principles force fields
    Large scale Molecular Dyanmics (MD) simulations
    Mesoscopic modeling (Coarse-grained MD, DPD, BD)
    Macroscopic modeling (finite elements, continuum 
                                               simulations, Lattice Boltzmann)
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What size is too big? What times are too long?

• QM (ab initio molecular dynamics)

electrons / N basis sets, speed ~ N3  or N4 (may be linear with very 
high prefactor)

Time steps ~10-2 fs. 
Example of big and long: 64-256 water molecules during 100 ps. 
• Classical atomistic MD 

Atoms/ N atoms, speed ~N2 (may be reduced with efficient 
algorithms, periodic coulomb is most expensive)

Time steps ~0.5-2 fs. 
Example of big and long (1 processor): 50,000 atoms for 1 ns.
(parallel simulations, can improve this much. Parallel codes 

available free or almost free: LAMMPS, AMBER, GROMACS, 
NAMD)



Short history of Molecular Simulations

• Metropolis, Rosenbluth, Teller (1953) Monte Carlo 
Simulation of hard disks. 

• Fermi, Pasta Ulam (1954) experiment on ergodicity
• Alder & Wainwright (1958) liquid-solid transition in hard 

spheres. “long time tails” (1970)

• Vineyard (1960) Radiation damage using MD
• Rahman (1964) liquid argon,  water(1971)
• Verlet (1967) Correlation functions, ...
• Andersen, Rahman, Parrinello (1980) constant pressure 

MD
• Nose, Hoover, (1983) constant temperature thermostats.

• Car, Parrinello (1985) ab initio MD.



The examples for each period are 
representative. The first five 
systems are modeled in vacuum 
and the others in solvent. 
The 38 µs β-hairpin simulation 
in 2001 represents an ensemble 
(or aggregate dynamics) 
simulation, as accumulated over 
several short runs, rather than a 
long simulation.

The table is taken from the book 
by  Tamar Schlick





RANK SITE SYSTEM CORES
RMAX 
(TFLOP/S)

RPEAK 
(TFLOP/S)

POWER 
(KW)

1 National Super 
Computer Center in 
Guangzhou
China

Tianhe-2, 
Intel Xeon 
Intel Xeon Phi 
31S1P
NUDT

3,120,000 33,862.7 54,902.417,808

2 DOE/SC/Oak Ridge 
National Laboratory
United States

Titan - Cray 
Cray Inc.

560,640 17,590.0 27,112.58,209

3 DOE/NNSA/LLNL
United States

Sequoia - 
IBM

1,572,864 17,173.2 20,132.77,890

4 RIKEN Advanced 
Institute for 
Computational 
Science (AICS)
Japan

K computer, 
SPARC64 
Fujitsu

705,024 10,510.0 11,280.412,660

5 DOE/SC/Argonne 
National Laboratory
United States

Mira - 
BlueGene/Q, 
IBM

786,432 8,586.6 10,066.33,945

Flops= Number of Cores/cpus Average frequency Operations per cycle∗ ∗
Laptop with 2.5 GHz single processor will have 10 Gflops (4 operation per cycle)

http://www.top500.org/lists/2014/11/



Vendors Count

HP 179

IBM 153

Cray Inc. 62

SGI 23

Bull 18

Dell 9

Fujitsu 8

NUDT 5

RSC Group 4

Atipa 3

Others 39





• Pick particles, masses and potential. 

• Initialize positions and momentum. (boundary conditions in space and 
time)

• Solve  F = m a  to determine r(t), v(t).

Newton (1667-87)

• Compute properties along the trajectory

• Estimate errors.

• Try to use the simulation to answer physical questions.

Molecular Dynamics (MD)



What are the forces? 

• Crucial since V(r) determines the quality of result.
• Semi-empirical potentials: potential is constructed on 

theoretical grounds but using some experimental data.
• Common examples are Lennard-Jones, Coulomb, 

embedded atom potentials. They are only good for simple 
materials. The ab initio philosophy is that potentials are to 
be determined directly from quantum mechanics as 
needed.

• But computer power is not  yet adequate in general.

• A powerful approach is to use simulations at one level to 
determine parameters at the next level.
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Unifying QM with molecular dynamics 

Ref. D. Marx and J. Hutter, Ab Initio Molecular Dynamics, Cambridge Univ  Press, 2009. 

The Hamiltonian Operator, 
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The evolution of the system given by time dependent Schrödinger 
equation (TDSE) 

( ) ( ){ },{ }; { },{ };i r R t H r R ti iI It
∂ Φ = Φ
∂

h

Now our aim is to carry out classical dynamics of nuclei in QM 
potential. Separate nuclear and electronic contributions to the total wave 

function Φ({ ri },{ RI };t) 

 
The simplest possible form is a product ansatz 

( ) ( ) ( ){ },{ }; { },{ } { };r R t r R R ti iI I IχΦ = Ψ

This ansatz was introduced by Born to separate systematically the 
light electrons from heavy nuclei
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Then we have 

Multiply by ψ*({ ri },RI)and         Equation of motion for χ ({RI },t) 

integrate over {ri } 

Multiply by χ*({ RI },t) and           Equation of motion for ψ({ ri },{RI})  

integrate over {RI } 



We can also have following product ansatz which does not invoke 
solving  time-independent electronic Schrödinger equation:  
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Breakdown of the adiabatic Born-Oppenheimer approximation in graphene 
Geim et. al.  Nat. Mat,  2007 Mar;6(3):198-201

.

Nuclear and electronic wave functions are separately normalized to unity 
at every instant of time.
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The phase factor was introduced as follows 
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Time dependent self-consistent field 
equations (TDSCF) 

•Both electrons and nuclei move quantum mechanically in time-
dependent effective potentials which are obtained self-consistently. 
•The simple product ansatz produces mean field description of the 

coupled nuclear and electronic dynamics. 



Classical dynamics of nuclei and quantum dynamics of electrons
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Where A is the amplitude and S is the phase 
factor,

Above equation is just the continuity equation if we identify 

* 2( )r Aρ χ χ= = Probability density
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J S
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Mρ
∇= =Define velocity field Messiah, Vol I , Chapter-6

Real part govern governs time evolution of phase S and imaginary part time evolution of 
amplitude A
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Multiplying the above equation by 2 A and rearranging we get 
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Note that continuity equation is independent of h

Now if we take the classical limit for the equation of motion for the 
phase factor      →0
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In the classical approximation, χ describes a fluid of non-interacting classical particles of mass MI and subject 
to the potential V(r): the density and current density of this fluid at each point of space are at all times 
respectively equal to the probability density ρ  and the probability current density J of the quantum particle at 
that point. 

2

( ) 0
2
I I

I

S M v
V r

t

∂ + + =
∂ ∑

In terms of the velocity field we have 

2

( ) 0
2
I I

I

M v
S V r

t

∂ ∇ + ∇ + ∇ =
∂ ∑

Take gradient



( ) 0Iv M v V
t

∂ + ×∇ + ∇ = ÷∂ 

I

dv
M V

dt
= −∇

So we have the equation of motion for the nuclei
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Thus the nuclei move according to the classical mechanics in an effective potential which  is obtained by 
solving simultaneously the time dependent electronic Schrodinger equation.



Note that TDSCF equation that describes the time evolution of the 
electrons still contains the full quantum-mechanical nuclear wave 
function χ({RI};t) instead of just the nuclei position RI. We can do a 
classical reduction by the following assumption 

TDSCF equation for ψ({ ri },t) then becomes

h 0



Ehrenfest’s theorem

This gives us the equation of motion of the mean values of  the coordinates q and the 
conjugate  momenta p of a quantum system 

[ ],i i

d
i q q H

dt
=h [ ],i i

d
i p p H

dt
=h

[ ],i
i

H
q H i

q

∂=
∂

hWe also have [ ],i
i

H
p H i

p

∂= −
∂

h

So we have i
i

d H
q

dt p

∂=
∂ i

i

d H
p

dt q

∂= −
∂

In general the mean values do not obey classical laws of motion unless one can replace 
the mean values of the  functions  on the right hand side by the function of the mean 
values 
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Statistical Ensembles
• Classical phase space is 6N variables (pi, qi) and a 

Hamiltonian function H(q,p,t).
• We may know a few constants of motion such as energy, 

number of particles, volume... 
• Ergodic hypothesis: each state consistent with our knowledge 

is equally “likely”; the microcanonical ensemble.
• Implies the average value does not depend on initial 

conditions.
• A system in contact with a heat bath at temperature T will be 

distributed according to the canonical ensemble:   
exp(-H(q,p)/kBT )/Z

• The momentum integrals can be performed. 
• Are systems in nature really ergodic? Not always! 



 Newton’s equation of motion are time reversible and so should be 
our algorithm.

 Hamiltonian dynamics preserve the magnitude of volume element in 
phase space and so our algorithm should have this area preserving 
property

 simplicity (How long does it take to write and debug?) 
 efficiency (How fast to advance a given system?) 
 stability (what is the long-term energy conservation?) 
 reliability (Can it handle a variety of temperatures, densities, 

potentials?) 

Criteria for an Integrator



The nearly universal choice for an integrator is the Verlet (leapfrog) algorithm

r(t+δt) = r(t) + v(t) δt + 1/2 a(t) δt 2 + b(t) δt 3 + O(δt 4) Taylor expand

r(t- δt) = r(t) - v(t) δt + 1/2 a(t) δt 2 - b(t) δt 3 + O(δt 4)  Reverse time

r(t+ δt) = 2 r(t) - r(t- δt) + a(t) δt 2 + O(δt 4)                                   Add

v(t) = (r(t+ δt) - r(t- δt))/(2 δt)  + O(δt 2)                    estimate velocities

Time reversal invariance is built in    the energy does not drift.

Velocity is not required to compute the new position.

Once the new position is computed using position at t- δt, discard the old 

Position. The current position become the old positions and the new position 
become the current position.

Note that velocity is used only to compute the kinetic energy and hence the 
temperature of the system

Time reversible and area preserving

Tuckerman, Berne, Martyna, JCP, 97, 1990 1992



For a classical system, specifying the instantaneous positions and momenta of all the 
particles constituting the system can specify the microstate at any time t. For N particles 
there are 3N coordinates q1,q2 ...q3N and 3N conjugate momenta p1,p2 ...p3N. The 

equations of motion are first order differential equations 
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Let us consider a simple one-particle system in one dimension with a 
Hamiltonian 

)(
2

2
xU

m
pH +=

Review of Hamiltonian Dynamics and Operators in Classical 
Mechanics
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The equations of motion are



Now Liouville’s theorem says that any phase space function A(x, p) 
evolves as

},{ HA
dt
dA =

{ }
p
A

x
H

x
A

p
HHA ∂

∂
∂
∂−∂

∂
∂
∂=,

where the the {A, H} is the Poisson bracket given by

The evolution equation gives back Hamilton’s equation of motion: To see that take A(x,p) =x. Then
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Similarly if we take A(x,p) = p
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As expected evolution equation gives back Hamilton’s equation of 
motion

Now define a two-dimensional phase space vector Γ=(x,p). Hamilton’s equation of motion 
for this Γ  is 

},{ H
dt
d ΓΓ =

Now we define Liouville operator L such that iLΓ  ={Γ ,H}



iL can be expressed as differential operator using Hamilton’s equation

p
p

x
x

p
xF

xm
p

pdx
dU

xm
p

px
H

xp
HiL

∂
∂+∂

∂=
∂
∂−∂

∂=
∂
∂−∂

∂=
∂
∂

∂
∂−∂

∂
∂
∂=



)(

The equation of motion in operator form is given by

ΓΓ =iL
dt
d

which can be solved to give 

)0()( Γ=Γ iLtet

The operator exp(iLt) is called the classical propagator and the presence of i gives a 
nice analogy with the QM propagator exp(-iHt/ħ)



Properties of Liouville Operator and propagator

It is Hermitian:  L† = L Prove this? (Home work)

The propagator U(t) ≡ exp(iLt) is a unitary operator

U†(t)U(t) = I Prove this? (Home work)

The unitarity of the propagator implies time reversal symmetry in the equations of 
motion. If the system is propagated forward in time up to a time t and then the clock is 
allowed to run backwards for a time –t, the system will evolve according to the same 
equations of motion but the direction of the velocities will be reversed, so that the 
system will simply return to its initial condition.

U(-t) = exp(-iLt)

Now apply U(t) on Γ(0) to get Γ(t) followed by U(-t) :                    Γ(t) = U(t) Γ(0) 



U(-t) U(t) Γ(0) = e-iLt eiLtΓ(0)= Γ(0)

So U(-t) U(t) = I  ⇒ U(-t) = U†(t) since U(t) is unitary

Since U†(t)  is equivalent to backward propagation in time, it 
implies time reversibility since U†(t)U(t) = I

Another important property of the unitary operator U(t) is that its 
determinant is 1 (Homework)

Unitarity of the propagator is consistent with the fact the volume in 
phase space is preserved under Hamilton’s equation (Homework)



Trotter Theorem

We have the evolution of the phase space vector 

)0()( Γ=Γ iLtet

In general it is difficult to evaluate exp(iLt) the reason for which will be clear from 
the following discussion  
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Show that iL1 and iL2 do not commute  : [iL1,iL2] ≠0 (Homework)

The difficulty in the any computation arises from the fact that  iL1 and iL2 do not 
commute  : [iL1,iL2] ≠0



Since they don’t commute 

exp(iL1t+iL2t) ≠ exp(iL1t)exp(iL2t) 

We can see this easily if we expand both side by Taylor expansion
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Trotter theorem comes to our rescue
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For a proof see Techniques and Applications of Path Integral by L. S. Schulman

For large but finite M above equation can be approximated as
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The expression on the left looks like approximate propagation of the system up to 
time t by M application of the operator in the bracket. If we interpret t/M as single 
time step, δt, then we have  
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This is the propagator U(δt) for the time step δt. Like U(t), U(δt) is unitary and 
preserve the time reversibility  of the dynamics

Show U†(δt)= U(-δt) = U-1(δt) 
and U(-δt) U(δt) = I      (Homework)

Now let us see what is the effect of the propagator U(δt) on the coordinates and 

momenta of the particles 
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This is just the Taylor series of g(x+c) so
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First operator acting on x has no effect, it 
involves only momentum derivative

Second operator changes x to x+δt p/m

Last operator acting on x has no effect. It acts on 
p and changes p to p+δt F(x)/2

Note that the action of exp(a∂/∂p) on x or g(x) has no 
effect: it acts like identity operator 
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Similarly we can apply U(δt) on p to get

First operator acting on p changes p to 
p+δt F(x)/2

Next operator acting on F(x) changes it to 
F(x+δt p/m)

Last operator acting on p changes p 
to p+δt F(x)/2

Argument of the second force in the 
above expression is just x(δt )



r(δt) = r(0) + v(0) δt + 1/2 a(r(0)) δt 2 + b(t) δt 3 + O(δt 4)  good to 2nd order in δt

Do the Taylor expand for velocities

v(δt) = v(0) + δt a(r(0)) +  O(δt 2) good to 1st  order in δt

To get v also accurate to the 2nd order in δt we consider starting from δt  and applying 
the rule backward in time (i.e. for a time  –δt) so that we end up back at 

r(0) = r(δt) -v(δt) δt + 1/2 a(r(δt)) δt 2 

v(δt) = (r(δt) - r(0))/(δt)  + δt /2 a(r(δt))                    

Now using the position equation we have 

r(δt) - r(0)= v(0) δt + 1/2 a(r(0)) δt 2 

So we have v(δt) = v(0) + δt /2  [a(r(0)) + a(r(δt)) ]

Combining we have 

r(δt) = r(0) + v(0) δt + 1/2 a(r(0)) δt 2

v(δt) = v(0) + δt /2  [a(r(0)) + a(r(δt)) ]       Velocity Verlet

Velocity Verlet algorithm

Recall the previous Position Verlet algorithm

r(t+ δt) = 2 r(t) - r(t- δt) + a(t) δt 2 + O(δt 4) 
                                 

v(t) = (r(t+ δt) - r(t- δt))/(2 δt)  + O(δt 2)





Verlet Algorithm: Flow Diagram

r

v

F

    t-δt         t          t+δt

Given current position and 
position at end of previous 
time step

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Slide from Kofke Lecture



Verlet Algorithm: Flow Diagram

r

v

F

    t-δt         t          t+δt

Compute the force at the 
current position

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Slide from Kofke Lecture



Verlet Algorithm: Flow Diagram

r

v

F

    t-δt         t          t+δt

Compute new position 
from present and previous 
positions, and present force

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Slide from Kofke Lecture



Verlet Algorithm : Flow Diagram

r

v

F

  t-2δt       t-δt         t          t+δt

Advance to next time step,
repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Slide from Kofke Lecture



Verlet Algorithm: Loose Ends
• Initialization

– how to get position at “previous time step” when starting 
out?

– simple approximation

• Obtaining the velocities
– not evaluated during normal course of algorithm
– needed to compute some properties, e.g.

• temperature
• diffusion constant

– finite difference

0 0 0( ) ( ) ( )t t t t tδ δ− = −r r v

[ ] 21
( ) ( ) ( ) ( )

2
t t t t t O t

t
δ δ δ

δ
= + − − +v r r



Verlet Algorithm Performance Issues
• Time reversible

– forward time step

– replace δt with −δt

– same algorithm, with same positions and forces, moves 
system backward in time

• Numerical imprecision of adding large/small 
numbers
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• Random direction
– randomize each component independently
– randomize direction by choosing point on spherical 

surface

• Magnitude consistent with desired temperature.  
Choices:
– Maxwell-Boltzmann:
– Same for y, z components

• Be sure to shift so center-of-mass momentum is 
zero

( )21
2( ) exp /x xprob v mv kTµ −

1
,

, ,

x i xN

i x i x x
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≡
→ −

∑

Initial Velocity



Leapfrog Algorithm

• Eliminates addition of small numbers O(δt2) 
to differences in large ones O(δt0)

• Algorithm
1
2

1 1 1
2 2
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Leapfrog Algorithm

• Eliminates addition of small numbers O(δt2) 
to differences in large ones O(δt0)

• Algorithm

• Mathematically equivalent to Verlet 
algorithm 

1
2

1 1 1
2 2

( ) ( ) ( )

( ) ( ) ( )
m

t t t t t t

t t t t t t

δ δ δ

δ δ δ

+ = + +

+ = − +

r r v

v v F

1 1
2

( ) ( ) ( ) ( )
m

t t t t t t t tδ δ δ δ + = + − + r r v F



Leapfrog Algorithm

• Eliminates addition of small numbers O(δt2) to 
differences in large ones O(δt0)

• Algorithm

• Mathematically equivalent to Verlet algorithm 
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previous time step



Leapfrog Algorithm

• Eliminates addition of small numbers O(δt2) 
to differences in large ones O(δt0)

• Algorithm

• Mathematically equivalent to Verlet 
algorithm 
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( ) ( ) ( )t t t t t tδ δ δ= − + −r r vr(t) as evaluated from 
previous time step
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Leapfrog Algorithm

• Eliminates addition of small numbers O(δt2) 
to differences in large ones O(δt0)

• Algorithm

• Mathematically equivalent to Verlet 
algorithm 
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previous time step
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Leapfrog Algorithm: Flow Diagram

r

v

F

    t-δt         t          t+δt

Given current position, and 
velocity at last half-step

Schematic from Allen & Tildesley, Computer Simulation of Liquids



r

v

F

    t-δt         t          t+δt

Compute current force

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Leapfrog Algorithm: Flow Diagram



r

v

F

    t-δt         t          t+δt

Compute velocity at 
next half-step

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Leapfrog Algorithm: Flow Diagram



r

v

F

    t-δt         t          t+δt

Compute next position

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Leapfrog Algorithm: Flow Diagram



r

v

F

  t-2δt       t-δt         t          t+δt

Advance to next time step,
repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Leapfrog Algorithm: Flow Diagram



Leapfrog Algorithm Loose Ends

• Initialization
– how to get velocity at “previous time step” when 

starting out?
– simple approximation

• Obtaining the velocities
– interpolate

1 1
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r(δt) = r(0) + v(0) δt + 1/2 a(r(0)) δt 2 + b(t) δt 3 + O(δt 4)  good to 2nd order in δt

Do the Taylor expand for velocities

v(δt) = v(0) + δt a(r(0)) + + O(δt 2) good to 1st  order in δt

To get V also accurate to the 2nd order in δt we consider starting from δt  and 
applying the rule backward in time (I.e. for a time  –δt) so that we end up back at 

r(0) = r(δt) -v(δt) δt + 1/2 a(r(δt)) δt 2 

v(δt) = (r(δt) - r(0))/(δt)  + δt /2 a(r(δt))                    

Now using the position equation we have 

r(δt) - r(0)= v(0) δt + 1/2 a(r(0)) δt 2 

So we have v(δt) = v(0) + δt /2  [a(r(0)) + a(r(δt)) ]

Combining we have 

r(δt) = r(0) + v(0) δt + 1/2 a(r(0)) δt 2

v(δt) = v(0) + δt /2  [a(r(0)) + a(r(δt)) ]       Velocity Verlet

Velocity Verlet algorithm



Velocity Verlet Algorithm

• Round off advantage of leapfrog, but better treatment 
of velocities

• Algorithm

• Implemented in stages
– evaluate current force
– compute r at new time
– add current-force term to velocity (gives v at half-time 

step)
– compute new force
– add new-force term to velocity

• Also mathematically equivalent to Verlet algorithm 
(in giving values of r)
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Velocity Verlet Algorithm  Flow Diagram

r

v

F

    t-δt         t          t+δt

Given current position, 
velocity, and force

Schematic from Allen & Tildesley, Computer Simulation of Liquids



r

v

F

    t-δt         t          t+δt

Compute new position

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Velocity Verlet Algorithm  Flow Diagram



r

v

F

    t-δt         t          t+δt

Compute velocity at half step

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Velocity Verlet Algorithm  Flow Diagram



r

v

F

    t-δt         t          t+δt

Compute force at new position

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Velocity Verlet Algorithm  Flow Diagram



r

v

F

    t-δt         t          t+δt

Compute velocity at full step

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Velocity Verlet Algorithm  Flow Diagram



r

v

F

  t-2δt       t-δt         t          t+δt

Advance to next time step,
repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Velocity Verlet Algorithm  Flow Diagram



Lines of code for Leap-frog Verlet algorithm

/* Carry out half-timestep update of atomic velocities using old forces. */

   velocity_step(n_atoms, atom_vels, atom_mass, delta, comp_forces);

   /* Carry out full-timestep update of atomic positions using half-timestep velocities. */

   position_step(n_atoms, atom_coords, atom_vels, atom_move,

                 scaled_atom_coords, h_inv, h, delta, neigh_switch);

 /* Add short-range nonbonded forces to force accumulators. */

      for (i = 0; i < n_atoms; ++i) {

         for ( k = 0; k < NDIM; ++k)

         comp_forces[i][k] += f_vdw_s[i][k] + f_coul_s[i][k];

      }

/* Carry out half-timestep update of atomic velocities using new forces. */

   velocity_step(n_atoms, atom_vels, atom_mass, delta, comp_forces);



void velocity_step(int n_atoms, double **atom_vels,

                   double *atom_mass, double delta, double **comp_forces)

{

   int i, k;

   double delta_over_2m;

   /* Update velocities. */

   for (i = 0; i < n_atoms; ++i) {

      delta_over_2m = delta /(2*atom_mass[i]) ;

      for ( k =  0; k < NDIM; ++k)

      atom_vels[i][k] += delta_over_2m * comp_forces[i][k];

   }

}



/* Carry out full-timestep update of atomic positions using half-timestep velocities. */

void position_step(int n_atoms, double **atom_coords,

                   double **atom_vels,

                   double **atom_move, double **scaled_atom_coords,

                   double **h_inv, double **h, double delta, int neigh_switch)

{

   int i, k;

   double dr[NDIM];

 /* Update positions. */

   for (i = 0; i < n_atoms; ++i) {

       for (k = 0; k < NDIM;  ++k) {

      dr[k] = delta * atom_vels[i][k];

      atom_coords[i][k] += dr[k];

} }

 /* If we are using periodic boundary conditions, calculate scaled atomic coordinates. */

      scaled_atomic_coords(n_atoms, h_inv, atom_coords, scaled_atom_coords);

      periodic_boundary_conditions(n_atoms, h, scaled_atom_coords, atom_coords);

}



/* Sample atomic velocities from a Maxwellian distribution. */

void sample_velocities(long *idum, double **atom_vels, int n_atoms,

                       double *sqrt_kT_over_m)

{

   int i, k;

   double sqrt_kT_by_m;

   /* Choose Gaussian-distributed cartesian velocity components for each

      atom, with zero mean and standard deviation equal to sqrt(kT/m). */

   for (i = 0; i < n_atoms; ++i) {

      sqrt_kT_by_m = sqrt_kT_over_m[i];

       for (k = 0; k < NDIM; ++k)

      atom_vels[i][k] = sqrt_kT_by_m * gasdev(idum);

   }

}

Velocity sampling routine



Other Algorithms

Leap Frog: This can be derived from Verlet algorithm. Velocities at 
half integer time step can be written as 

r(t+ δt) =  r(t) + δt v(t+ δt/2)

v(t- δt/2) = [ r(t) - r(t- δt) ]/ δt

v(t+ δt/2) = [ r(t+δt) -r(t) ]/ δt

From the above two equation we get the expression for the new 
position

To update the velocity we use the expression from Verlet algorithm

v(t+ δt/2) =  v(t- δt/2) + δt a(t) 

Note that velocities are not defined at the same time as the positions, so KE and 
PE are also not defined at the same time, and hence we can not directly compute 

the total energy in the Leap-Frog scheme



Higher Order algorithm: Predictor-corrector

t tδ+

Predictor:  use the position and its first n derivatives at time t (velocity, acceleration 
etc.) to find the position and its first n derivatives (velocity, acceleration etc.) at time

Force evaluation: Use the predicted position to compute the force and acceleration at 
the predicted positions. The resulting acceleration will be in general different from the 
“predicted acceleration” in previous step. 
Corrector: use the new acceleration to correct the predicted position, velocities and 
acceleration.
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The difference between the predicted (step 1) and calculated (step 2) acceleration 
is given by 

( ) ( ) ( )ca t t a t t a t tδ δ δ∆ + = + − +

0( ) ( ) ( )cr t t r t t c a t tδ δ δ+ = + + ∆ +

1( ) ( ) ( )cv t t v t t c a t tδ δ δ+ = + + ∆ +

2( ) ( ) ( )ca t t a t t c a t tδ δ δ+ = + + ∆ +

3( ) ( ) ( )cb t t b t t c a t tδ δ δ+ = + + ∆ +

and is used to correct the positions and velocities in the correction step as follows

Coefficients are tabulated for q-th order predictors (Gear):  C0=1/6, C1 = 5/6, C2=1, C3 
= 1/3 



How to set the time step
• Adjust to get energy conservation to 1% of kinetic energy.
• Even if errors are large, you are close to the exact 

trajectory of a nearby physical system with a different 
potential. 

• Since we don’t really know the potential surface that 
accurately, this is satisfactory.

• Leapfrog algorithm has a problem with round-off error.
• Use the equivalent velocity Verlet instead:

r(t+ δt) =  r(t) + δt [ v(t) +(δt /2) a(t)]
v(t+ δt /2) = v(t)+(δt /2) a(t)
v(t+ δt)=v(t+ δt /2) + (δt /2) a(t+ δt) 



Linear Stability analysis for Harmonic oscillator
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How to increase time step?

Limiting factors: intra-molecular motions
Vibrational mode Wave number

(1/ λ) cm-1

Period Tp 

(λ/c) fs
Tp/2π 

(fs)
O-H, N-H stretch

C-H stretch
3200-3600

3000
9.8
11.1

3.1
3.5

C≡C, C≡N stretch
C=C stretch

2100
1700

15.9
19.6

5.1
6.2

H-O-H bend
O-C-O bend

1600
700

20.8
47.6

6.4
15

Freeze or constrain the fast motion: make all bond, angle involving H 
rigid



How to increase time step?

Multiple time steps algorithm

Short-range interactions governs the intra-molecular motion, time scale 
of which are very fast. In that time scale “long range” part of the 
interaction hardly changes and need not be computed at same frequency 
of the short range interactions.

longshort FFF +=

longmedshort FFFF ++=
or

a time step to compute short-range interactions
another time stop to compute medium range interactions
another time step to compute long-range interactions

Use Multiple time steps



fast med slowL L L L= + +

We can write the Liouville operator  L as a sum of  three operators that 
characterize the scales of motions  associated with different potential 
components 

( )( ) exp fast med slowi t L L LiL te δδ  + + =

Tuckerman, Berne, Martyna, JCP, 97, 1990 (1992)



• State variables
– each variable has an associated “conjugate” variable

• temperature ⇔ energy (kT,E)
• pressure ⇔ volume (P,V)
• chemical potential ⇔ number of molecules (µ,N)

– specification of state requires fixing one of each pair
– the dependent variable can be measured by the simulation

• Configuration variables
– position, orientation, momentum of each atom or molecule
– energy, forces and torques
– time

• Properties
– transport coefficients, free energy, structural quantities, etc.

• Molecular model parameters
– characteristic energy, size, charge

Physical Quantities in Molecular Simulation



Separation of the Energy

• Total energy is sum of kinetic and potential parts
– E(pN,rN) = K(pN) + U(rN)

• Kinetic energy is quadratic in momenta 

• Kinetic contribution can be treated analytically in 
partition function

• And it drops out of position averages
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Simple Averages 1. Energy

• Average energy

• Note thermodynamic connection

• Average kinetic energy

• Average potential energy
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Simple Averages 2. Temperature

• Need to measure temperature in microcanonical 
ensemble (NVE) simulations

• Define instantaneous kinetic temperature

• Thermodynamic temperature is then given as 
ensemble average

• Relies on equipartition as developed in canonical 
ensemble

• A better formulation has been developed recently 
(Thermostating)

21
/

3 iT p m
Nk
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T T=

More generally, divide by number of 
molecular degrees of freedom instead of 3N



Simple Averages 3a. Pressure

• From thermodynamics and bridge equation
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Simple Averages 4. Heat Capacity

• Example of a “2nd derivative” property

• Expressible in terms of fluctuations of the energy

• Other 2nd-derivative or “fluctuation” properties
– isothermal compressibility

2
2

2
, ,

2

( )

1

( )

v
V N V N

N N E

E A
C k

T

k dr dp Ee
Q

β

β
β

β
β β

β

−

 ∂ ∂ = = −  ÷ ÷∂  ∂ 
∂= −

∂ ∫

22 2
vC k E Eβ  = − 

,

1
T

T N

V

V P
κ ∂ = −  ÷∂ 

Note:  difference between two O(N2) 
quantities to give a quantity of O(N)



Dimensions and Units 1. Magnitudes

• Important extensive quantities 
small in magnitude
– when expressed 

in macroscopic units
• Small numbers are 

inconvenient
• Two ways to magnify them

– work with atomic-scale 
units

• ps, amu, nm or Å
– make dimensionless with 

characteristic values
• model values of size, 

energy, mass



Dimensions and Units 2. Scaling

• In simulations it is often convenient to express quantities such as 
temperature, density, pressure and the like in reduced units. This 
means that we choose a convenient unit of energy, length and mass 
and then express all the other quantities in terms of these basic 
units. A natural choice of our basic units is the following
– size σ
– energy ε
– mass m

In terms of these 
basic units, all 

other units follow



Why reduced Units?

• Many combinations of ρ, T, ε and σ  all correspond to the same 
state in reduced units. This is the law of corresponding states: the 
same simulation can of a LJ model can be used to study the Argon 
at 60 K and density 840 kg/m3 and Xe at 112 K and a density at 
1617 kg/m3. In reduced unit both simulations corresponds to the 
state point ρ = 0.5 and T = 0.5. Scaling by model parameters

• In reduced units almost all quantities of interest are of order 1 (say 
between 10-3 and 103). Hence if we suddenly find very large (or 
very small) number in our simulations, suspect some error 
somewhere.

• Simulation results obtained in reduced units can be translated back 
into real units.

See the following table



Conversion of reduced Units to real Units for LJ argon system: ε/kB = 119.8 K, 

σ=3.405x10-10 m, m = 0.03994 kg/mol
  

Quantity Reduced 
Units

Real Units

Temperatur
e

T* = 1 T = ε/kB = 119.8 K
 

Density ρ* = 1 ρ = 1680 kg/m3

Time δt* = 0.005 δt=1.09 x 10-14s

Pressure P*=1 P = 41.9 MPa
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