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dIntroduction (Basic facts and some history)
dMolecular dynamics, Various schemes for integration,

Inter and Intra molecular forces, Various ensemble (NVE, NVT,
NPT, NPH), atomic charge derivation scheme

JHow to make the simulation efficient (Cell List, Neighbor List),
Periodic Boundary condition, computing long range interactions

J Advanced free energy calculation methods
dMonte Carlo simulation

JdApplication: Nanotube, graphene, Liquid Crystal, DNA/protein
simulations
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Grading:

1. 5-6 Assignments

2 individual assignment (need to do some simulation work)

3. Term paper (on some related topics covered in the course.
Topics to be discussed with the instructor)

4. One exam to be decided later
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Water transport inside carbon nanotubes
mediated by phonon-induced oscillating friction
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Giant osmotic energy conversion measured in a
single transmembrane boron nitride nanotube
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Molecular Dynamics Simulation of the Formation, Structure,
and Dynamics of Small Phospholipid Vesicles




What is molecular simulation?

Molecular modeling 1s the science and art of studying
molecular structure and function through model building
and computation.

Model building could be as simple as representing
molecule by hard/soft sphere (beads) , rigid rods, or other
geometrical shape, sphere/beds connected through springs
or molecule with full chemical details.

Single Dimer Trimer

& —» Hydrophilic head ® —» Water
@ —» Hydrophobic tail




Molecular model of bio-molecules




What is molecular simulation?
Computation can be carried out using following methods:
Molecular mechanics, molecular dynamics, Monte Carlo,

Free energy and solvation methods, structure/activity
relationship (SAR) and many other established procedure.



Need for Molecular simulation

There are no general method for a solving complex many-
body problems. Hamiltonian 1s unknown, until we solve the
quantum many-body problem! In fact in most cases not
possible and requires lots of approximations.

Molecular simulations are the only possible solution for
such complex many body systems.

In many cases experiments are limited and expensive.
Simulations can complement the experiment.

Simulation can give molecular level understanding even at a
single molecule level



Simulation Methodology

Semi-empirical ab initio methods
l l
Give us the phenomena and Maxwell, Boltzmann and

invent a model to mimic the Schrodinger gave us the model. All
we must do 1s numerically solve
the mathematical problem and
determine the properties.

problem.

These two approaches can be combined to make
what 1s termed as Multi-scale modeling strategies



“The general theory of quantum mechanics is now
almost complete. The underlying physical laws
necessary for the mathematical theory of a large
part of physics and the whole of chemistry are
thus completely known, and the difficulty is only
that the exact application of these laws leads to
equations much too complicated to be soluble.”

Dirac, 1929



Multi-scale Modeling strategy

Time
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High quality multi-scale simulations

Quantum Mechanical calculations

First Principles force fields

Large scale Molecular Dyanmics (MD) simulations

Mesoscopic modeling (Coarse-grained MD, DPD, BD)

Macroscopic modeling (finite elements, continuum
simulations, Lattice Boltzmann)

YV VYV



What size 1s too big? What times are too long?

QM (ab initio molecular dynamics)

electrons / N basis sets, speed ~ N' or N*(may be linear with very
high prefactor)

Time steps ~107 fs.
Example of big and long: 64-256 water molecules during 100 ps.

Classical atomistic MD

Atoms/ N atoms, speed ~N*(may be reduced with efficient
algorithms, periodic coulomb 1s most expensive)

Time steps ~0.5-2 fs.
Example of big and long (1 processor): 50,000 atoms for 1 ns.

(parallel simulations, can improve this much. Parallel codes
available free or almost free: LAMMPS, AMBER, GROMACS,
NAMD)



Short history of Molecular Simulations

Metropolis, Rosenbluth, Teller (1953) Monte Carlo
Simulation of hard disks.

Fermi, Pasta Ulam (1954) experiment on ergodicity

Alder & Wainwright (1958) liquid-solid transition in hard
spheres. “long time tails” (1970)

Vineyard (1960) Radiation damage using MD
Rahman (1964) liquid argon, water(1971)
Verlet (1967) Correlation functions, ...

Andersen, Rahman, Parrinello (1980) constant pressure
MD

Nose, Hoover, (1983) constant temperature thermostats.
Car, Parrinello (1985) ab 1nitio MD.



The examples for each period are
representative. The first five
systems are modeled in vacuum
and the others in solvent.

The 38 ps B-hairpin simulation
in 2001 represents an ensemble
(or aggregate dynamics)
simulation, as accumulated over
several short runs, rather than a
long simulation.

The table is taken from the book

by Tamar Schlick

Trajectory

brane | 106,189 atoms, PME])

Pericd Svstem and Size® Leangth® CPU Time Computer”
[1ns]
1973 || Dinueleoside (GpC) in vacum — —
(8 flexible dihedral angles)
1977 ||BPTL vacuum 0.01
(38 residues, 325 atoms)
1983 ||DMA, vacium, 12 & 24 bp 0.09 several weeks each
(T54/1530 atoms) Vax T8O
1984 || GnRH, vacuum 0.15
i decapeptide, 16] atoms)
1985 || Myoglobin, vacum 0.30 30 davs
(1423 atoms) VAN 117780
1985 ||DMA, 5 bp 0.50 20 hrs
(2808} atoms) Cray X-MP
1989 ([Phospholipid Micells 0.10
(e 70080 atoms)
1002 [[HIV prot=ase 0.10 100 hrs.
(25000 atoms) Cray Y-MP
1907 || Estrogen' DNA 0.10 22 days
(36,000 atoms, multipoles) HP-735(8)
| 908 [(DMA, 24 bp 0.50 | wear, 5G]
(21,008 atoms, PME) Challengs
002 [ F-heptapeptide in methano] 200 2 months, 5G1-
{ = SO000000 atoms) Challenge ¢ 3)
1902 || Villin headpizces (36 residuss, [ 000 4 months, 256proc.
1 2,008 atoms, cutoffs) Cray T3IVE
1900 |[ Aoy complex m phospho lipid l 75 davs, &4 450-MHz-
bilaver (91,061 atoms, cutoffs) pree. Crav TAE
2001 || C-temminal F-hairpin of protsin-| 38000 ~ & days, 3000 proc.
G (177 atoms, implicit solvent) Foldingi@home megas lustsr
2002 |lchannel protein in lipid mem- 5 A0 hrs, 500 proc. LeMisux terascals

system: 30 davs, 32 proc. Limee { Athlon)
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Figure 1.1. The evolution of molecular dynamics simulations with respect to system sizes
and simulation lengths (see also Table 1.2).



Flops= Number of Cores/cpus*Average frequency *Operations per cycle
Laptop with 2.5 GHz single processor will have 10 Gflops (4 operation per cycle)

RMAX RPEAK POWER
RANK SITE SYSTEM CORES (TFLOP/S) (TFLOP/S) (KW)
1 National Super Tianhe-2, 3,120,000 33,862.7 54,902.417,808
Computer Center in Intel Xeon
Guangzhou Intel Xeon Phi
China 31S1P
NUDT
2 DOE/SC/Oak Ridge Titan - Cray 560,640 17,590.0 27,112.58,209
National Laboratory Cray Inc.
United States
3 DOE/NNSA/LLNL Sequoia - 1,572,864 17,173.2 20,132.77,890
United States IBM
4 RIKEN Advanced K computer, 705,024 10,510.0 11,280.412,660
Institute for SPARC64
Computational Fujitsu
Science (AICS)
Japan
5 DOE/SC/Argonne Mira - 786,432 8,586.6 10,066.3 3,945
National Laboratory BlueGene/Q,
United States IBM

http://www.top500.org/lists/2014/11/



Vendors Count

HP 179
IBM 153
Cray Inc. 62
SGI 23
Bull 18
Dell 9
Fujitsu 8
NUDT 5
RSC Group 4
Atipa 3

Others 39
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Figure 1.2. The evolution of molecular dynamics simulations with respect to simulation
lengths (see also Table 1.2 and Figure 1.1). The data points for 2020 and 2055 represent
extrapolations from the 1977 BPTI[136] and 1998 villin [57, 55] simulations, assuming a
computational power increase by a factor of 10 every 3—4 years, as reported in [56].



Molecular Dynamics (MD)

Pick particles, masses and potential.

Initialize positions and momentum. (boundary conditions in space and
time)

Solve F=m a to determine r(t), v(t).

Compute properties along the trajectory
Estimate errors.

Try to use the simulation to answer physical questions.




What are the forces?

2 ' -
d—;:—DV(r)
dt

Crucial since V(r) determines the quality of result.

Semi-empirical potentials: potential 1s constructed on
theoretical grounds but using some experimental data.

Common examples are Lennard-Jones, Coulomb,
embedded atom potentials. They are only good for simple
materials. The ab initio philosophy 1s that potentials are to
be determined directly from quantum mechanics as
needed.

But computer power is not yet adequate in general.

A powerful approach 1s to use simulations at one level to
determine parameters at the next level.



Unitying QM with molecular dynamics

The Hamiltonian Operator,

h? o) h?

— _ 2
H= ;—2M[ D] ZZ%D
2 i 2Z]ZJ
12 r‘ Olgf 7 J‘

h2
:_;ﬁ 7 Ry O+, [ R )

e

:_§—52 +H ({3 (R 3

Ref. D. Marx and J. Hutter, Ab Initio Molecular Dynamics, Cambridge Univ Press, 2009.



The evolution of the system given by time dependent Schrodinger
equation (TDSE)

ihZ CD({r}{ }t) HCD({r}{R[} z)

Now our aim 1s to carry out classical dynamics of nucle1 in QM

potential. Separate nuclear and electronic contributions to the total wave
function ®({ r. },{ R, };t)

The simplest possible form 1s a product ansatz

| {1} 4R Yt =W ) AR Y X (R, 3t

This ansatz was introduced by Born to separate systematically the
light electrons from heavy nuclei



Then we have

L0 I R~ R
lhaw(lﬁlaR])X(Rlat)_ [Zz—MDI_iz—n/liDi +I/n_e]l'|J(l/'l-,R])X(R[,t)

Multiply by y*({ r. },R)and — Equation of motion for X ({R, },t)
integrate over {r. |

Multiply by X"({ R, },t) and Equation of motion for y({ r, },{R;})
. —
integrate over {R, }



We can also have following product ansatz which does not invoke
solving time-independent electronic Schrodinger equation:

({r}{ }t) W[ {rde) x ( }t)exp%fﬁ/%t)dtﬂ

Nuclear and electronic wave functions are separately normalized to unity
at every instant of time. <X'f | X'f> -1 <L/J't |‘//f> —

The phase factor was introduced as follows
o= (W' ({r}1t) X" ({R}se) HW({r}:t) X({R, }:1) drdR

Breakdown of the adiabatic Born-Oppenheimer approximation in graphene
Geim et. al. Nat. Mat, 2007 Mar;6(3):198-201



Time dependent self-consistent field

equations (TDSCF)
lhg)(:—z h |:|2X +[ arY ' H LP})(
ot oM, ! J ‘
He:‘lZ;:,_Dz +V ]

1

2

[] ) h
[ARX Y Ve XD

6 h
at LIJ(r =" Z2m€

*Both electrons and nuclei move quantum mechanically n time-
dependent effective potentials which are obtained self-consistently.
*The simple product ansatz produces mean field description of the
coupled nuclear and electronic dynamics.



Classical dynamics of nuclei and quantum dynamics of electrons

SR here A is the amplitude and S is the ph
i ere A 1S the amplitude and S 1S the phase
X A(Rlat)e factor,

Real part govern governs time evolution of phase S and imaginary part time evolution of
amplitude A

“ 22 |DS+jmew D221[Z4 HW 1
04 1 1
—+Y —(0,4)(0,8)+ —— 4025 =0 HW 2

Above equation is just the continuity equation if we identify

o(r)=x x =4 Probability density

() = A LIS
(7/' ) _ M Current denstiy
1
_J _0OS |
Define velocity field V== Messiah, Vol I, Chapter-6
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1 I ) 1

A028)=0

Multiplying the above equation by 2 A and rearranging we get

2
a; ZMLDI(AZD,S) =0

1 I
0p _
EJFZ d,J,=0

Note that continuity equation is independent of h

Now 1f we take the classical limit for the equation of motion for the
phase factor h -0

aS Z2M EIS +IerIJHL|—’ 0



0S | 2
- —( 4,S V(r)=0
at+ZZM,( S) V)

IerI-’*HeLIJ =V (r)

In the classical approximation, X describes a fluid of non-interacting classical particles of mass M, and subject

to the potential V(r): the density and current density of this fluid at each point of space are at all times
respectively equal to the probability density p and the probability current density J of the quantum particle at
that point.

In terms of the velocity field we have

oS M v?
—+ ) —LL +)(r)=0
ot Z 2 ")

Take gradient
a 2
Z0S+0Y L +0V(r)=0
5 Z (r)=



@%Hvﬂ)EM]wDV:O

[]

So we have the equation of motion for the nuclei
%k
M, BnH=-0, [arv'H W

Thus the nuclei move according to the classical mechanics in an effective potential which is obtained by
solving simultaneously the time dependent electronic Schrodinger equation.



Note that TDSCF equation that describes the time evolution of the
electrons still contains the full quantum-mechanical nuclear wave
function X({R,};t) instead of just the nuclei position R,. We can do a
classical reduction by the following assumption

IX(Rr, ) =[8(R — Ry(t))
/’ dRY*R;y — R;(t) h 0

TDSCF equation for y({ t, },t) then becomes

oW -
f—_— U4V (e VL IR (VW
oy Z o Vz + ({r:}, {R1(¥)})

Ho{ead RO} U({r}, (Ri):)




Ehrenfest’s theorem

This gives us the equation of motion of the mean values of the coordinates q and the
conjugate momenta p of a quantum system

d d
! dt<ql> <[ql’ ]> ! dl‘<pl> <[p19 ]>
0H
We also have — G_H p.,H =—h—
[ql'aH] _lhaqi [ i ] apl
d _|OH d OH
So we have —(qg.)={( — “ -/ 2

In general the mean values do not obey classical laws of motion unless one can replace
the mean values of the functions on the right hand side by the function of the mean

values
0H(q,> --4y; Prs--Py) \ _ O
api api

H(<q,>..<qy><p,>.<p, >



Statistical Ensembles

Classical phase space 1s 6N variables (p, ) and a
Hamiltonian function H(q,p,t).

We may know a few constants of motion such as energy,
number of particles, volume...

Ergodic hypothesis: each state consistent with our knowledge
1s equally “likely”’; the microcanonical ensemble.

Implies the average value does not depend on 1nitial
conditions.

A system 1n contact with a heat bath at temperature T will be
distributed according to the canonical ensemble:

exp(-H(q,p)/k,T )/Z
The momentum integrals can be performed.

Are systems in nature really ergodic? Not always!



Criteria for an Integrator

» Newton’s equation of motion are time reversible and so should be
our algorithm.

» Hamiltonian dynamics preserve the magnitude of volume element in
phase space and so our algorithm should have this area preserving

property
» simplicity (How long does it take to write and debug?)
> efficiency (How fast to advance a given system?)
> stability (what is the long-term energy conservation?)

> reliability (Can it handle a variety of temperatures, densities,
potentials?)



The nearly universal choice for an integrator is the Verlet (leapfrog) algorithm

r(t+8t) = 1(t) + v(t) 8t + 1/2 a(t) 8t 2 + b(t) 5t 3 + O(8t 4) Taylor expand
r(t- 8t) = r(t) - v(t) 8t + 1/2 a(t) 5t 2 - b(t) &t 3 + O(5t #) Reverse time
r(t+ 8t) = 2 r(t) - r(t- 8t) + a(t) 5t 2+ O(5t %) Add

v(t) = (r(t+ 8t) - r(t- 8t))/(2 dt) + O(5t 2) estimate velocities

Time reversal invariance is built in [] the energy does not drift.
Velocity 1s not required to compute the new position.
Once the new position 1s computed using position at t- ot, discard the old

Position. The current position become the old positions and the new position
become the current position.

Note that velocity is used only to compute the kinetic energy and hence the
temperature of the system

Time reversible and area preserving

Tuckerman, Berne, Martyna, JCP, 97, 1990 1992



Review of Hamiltonian Dynamics and Operators in Classical
Mechanics
For a classical system, specifying the instantaneous positions and momenta of all the
particles constituting the system can specify the microstate at any time t. For N particles
there are 3N coordinates q,q, ...q,, and 3N conjugate momenta p ,p, ...p,,. The

equations of motion are first order differential equations

. __0H(q;,p;)
p;=-

l aql,

. _0H(q;,p;)
)

Let us consider a simple one-particle system in one dimension with a
Hamiltonian

2
:p +
H=L U(x)

The equations of motion are

=P ':—d_U:
=m P )



Now Liouville’s theorem says that any phase space function A(x, p)
evolves as

dA _
Al = 4,1}

where the the {A, H} is the Poisson bracket given by

0H 04 _0H 04
[A H] dp Ox Ox Op

The evolution equation gives back Hamilton’s equation of motion: To see that take A(x,p) =x. Then

dx — o —
7Rk {x,H}

_pox_dUOox_
=y T dx gp m

Ox_
So we have X =p/m  Since ap 0




Similarly if we take A(Xx,p) =p

dp _ :
P}

pOp_dUOp__dU _
= mox dx ap dx F()

So we have  p=F(x)

As expected evolution equation gives back Hamilton’s equation of
motion

Now define a two-dimensional phase space vector I'=(x,p). Hamilton’s equation of motion
for this " is

& =, H}

Now we define Liouville operator L such that IL/ ={",H}



il can be expressed as differential operator using Hamilton’s equation

;g =0H 0 _0H 0
Op Ox Ox Op

_p0_dUod
mox dx Op
=P 0 _py)0
Fog

.0 ,:0
_xa+p@

The equation of motion in operator form is given by

dr —.
7 iLr

which can be solved to give
[ ()=elLtr(0)

The operator exp(iLt) 1s called the classical propagator and the presence of i gives a
nice analogy with the QM propagator exp(-1Ht/h)



Properties of Liouville Operator and propagator

It is Hermitian: Li=L Prove this? (Home work)
The propagator U(t) =exp(iLt) 1s a unitary operator

UmUir) =1 Prove this? (Home work)

The unitarity of the propagator implies time reversal symmetry in the equations of
motion. If the system is propagated forward in time up to a time ¢ and then the clock is
allowed to run backwards for a time —¢, the system will evolve according to the same
equations of motion but the direction of the velocities will be reversed, so that the

system will simply return to its initial condition.

U(-1) = exp(-iLt)

Now apply U(t) on '(0) to get I (t) followed by U(-t) : [(t)=U()I(0)



U(-t) U(t) I'(0) = e e (0)=T(0)

So U(-t) U(t) =1 U U(-t) = U'(t) since U(t) 1s unitary

Since U'(t) 1s equivalent to backward propagation in time, it
implies time reversibility since U'(t)U(t) = 1

Another important property of the unitary operator U(t) 1s that its
determinant 1s 1 (Homework)

Unitarity of the propagator 1s consistent with the fact the volume in
phase space 1s preserved under Hamilton’s equation (Homework)



Trotter Theorem

We have the evolution of the phase space vector
[(£)=elLIT (0)

In general 1t 1s difficult to evaluate exp(iLt?) the reason for which will be clear from
the following discussion

Remember 1L can be written as

p a =il 2
iL = 0x+F(x)6p =iL.+iL

iL T iL F(x)ap

The difficulty in the any computation arises from the fact that 1L, and iL, do not
commute : [1L,,1L,] #Z0

Show thatiL, and 1L, do not commute : [iL,,iL,] #0 (Homework)



Since they don’t commute
exp(iL t+iL,t) # exp(iL,t)exp(iL,t)
We can see this easily if we expand both side by Taylor expansion
oLl =1+ (L, +iL))t +%(iL1 +L 262+
=1+iLt +%§iL1)2 +(iL2)2 +(iL,)(L,) +(iL2)(iL1)§¢2 ...

Now elLit =1+(iL)) +%(iL1)2z2 +o elLlst =1+ (L)t +%(iL2)2t2 +o.

5)
ellit gilet =[1+ (L)t +%(iLI)212 +..J[1+GL.)t +%(iL2)2t2 +...]
=1+iL¢+iLt +[(L)GL.) +%(1'Ll)2 +%(1‘L2)2]t2 +...

[, +il )t
BRCTRESY



Trotter theorem comes to our rescue

T owil Yy . DiLt/aM LM L tiam M
e(lllz)zhm%2 e | e 2 J
M—)OOD S
]

U
U

For a proof see Techniques and Applications of Path Integral by L. S. Schulman

For large but finite M above equation can be approximated as

_— 0L t/2M Lt/ M il t/2M M
L HLy DLy t/2M LM L

DDD@D
OOOodo

L +il /M ‘ ]
e(z i I 2) :eszt/zM let/M szt/ZM

e e

The expression on the left looks like approximate propagation of the system up to
time t by M application of the operator in the bracket. If we interpret t/M as single
time step, Ot, then we have



L = (lL +iL )CY elL &/281L15tezL2&/2

This is the propagator U(0t) for the time step ot. Like U(t), U(dt) is unitary and
preserve the time reversibility of the dynamics

Show UT(dt)= U(-0t) = U-!(dt)
and U(-0t) U(dt)=1  (Homework)

Now let us see what is the effect of the propagator U(dt) on the coordinates and
momenta of the particles

L 0 0 1262 _
Some useful identity ecax . [I+eatt 2 t.]x=x+c
6
Ox 15
2= 5 —L g(x)
k= ()k 6xg
00 k
= T 1ok, .0

k=0k! This is just the Taylor series of g(x+c) s0 ¢ 0x g(x)=g(x+c)



Note that the action of exp(ad/dp) on x or g(x) has no
effect: it acts like 1dentity operator

Irw 9 520 Ypm?
U(c5t)x:e2 e moxe? P x

s d : : :
—F (x)a— &Ei First operator acting on x has no effect, it
_e? Pe moOxy involves only momentum derivative
_ 2 Op O
—e (x ;p) Second operator changes x to x+0t p/m
=+ (p+ 2 F(w) -
—X m p 5 * Last operator acting on x has no effect. It acts on
5 52 p and changes p to p+0ot F(x)/2

x(@) =x+ % p+ L F(x)
m 2m



Similarly we can apply U(dt) on p to get

Irm 9 570 Ypm

U(&)p:ez ape maxez app

A (x)i 5P 9
_e?2 op, mox (p +§ F(x)) First operator acting on p changes p to
2 pt+ot F(x)/2
s 0
_F(x)_
=2 Op (p+ o F(x+ o ) Next operator acting on F(x) changes it to
m F(x+0ot p/m)
=p +§F (x) +QF (x+é( p +§F (x))) Last operator acting on p changes p
2 2 m 2 to p+t F(x)/2
& & o’
p(a) =p+—[F(x)+F(x+=p+—F(x))]
2 m  2m

Argument of the second force in the
above expression is just x(Ot )

:p<0)+%[F<x(0>)+F<x<&>>]



Velocity Verlet algorithm

r(8t) = 1(0) + v(0) 8t + 1/2 a(r(0)) 6t 2+ b(t) 8t * + O(5t ) good to 2" order in &t
Do the Taylor expand for velocities
v(8t) = v(0) + 5t a(r(0)) + O(5t2) good to 1%t order in 5t

To get v also accurate to the 2" order in &t we consider starting from 8t and applying

the rule backward in time (i.e. for a time —ot) so that we end up back at
r(0) = r(dt) -v(dt) ot + 1/2 a(r(dt)) ot 2
v(8t) = (r(81) - r(0))/(t) + 5t /2 a((51)) Recall the previous Position Verlet algorithm
r(t+ 8t) = 2 r(t) - r(t- 8t) + a(t) 5t 2 + O(5t %)
Now using the position equation we have

1(8t) - r(0)= v(0) 5t + 1/2 a(r(0)) &t 2 v(t) = (r(t+ 8t) - r(t- 5t))/(2 §t) + O(5t 2)

So we have v(ot) = v(0) + ot /2 [a(r(0)) + a(r(ot)) ]
Combining we have

r(ot) =r(0) + v(0) ot + 1/2 a(r(0)) ot 2

v(ot) =v(0) + ot /2 [a(r(0)) + a(r(ot)) ] Velocity Verlet



THE GLOBAL MD ALGORITHM

1. Input initial conditions

Potential interaction V" as a function of atom positions
Positions » of all atoms in the system
Velocities v of all atoms in the system

I

repeat 2,3.4 for the required number of steps:

2. Compute forces
The force on any atom
Fo— 2V

=

ar
is computed by calculating the force between non-bonded atom
pairs:
Fi=3,F
plus the forces due to bonded interactions (which may depend on 1,
2, 3, or 4 atoms), plus restraining and/or external forces.
The potential and kinetic energies and the pressure tensor are
computed.
1l

3. Update configuration

The movement of the atoms is simulated by numerically solving
Newton’s equations of motion

&, _F,
dtz oy
or
dr; dv; F|
—_— =1y, — = —
dt ot M4
1)

4. if required: Output step
write positions, velocities, energies, temperature, pressure, etc.




Verlet Algorithm: Flow Diagram

t-Ot t t-+0t

Given current position and
position at end of previous
time step

Schematic from Allen & Tildesley, Computer Simulation of Liquids
Slide from Kofke Lecture




Verlet Algorithm: Flow Diagram

t-Ot t t-+0t

Compute the force at the
current position

Schematic from Allen & Tildesley, Computer Simulation of Liquids
Slide from Kofke Lecture




Verlet Algorithm: Flow Diagram

t-Ot t t+Ot
r _——T — T, ..
S Compute new position
7 from present and previous
// positions, and present force
F

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Slide from Kofke Lecture




Verlet Algorithm : Flow Diagram

t-20t t-Ot t t+ot

Advance to next time step,
repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids
Slide from Kofke Lecture




Verlet Algorithm: Loose Ends

* Initialization

— how to get position at “previous time step” when starting
out?

— simple approximation
r(ty —ot) =r(ty) — v(ty)ot

* Obtaining the velocities
— not evaluated during normal course of algorithm

— needed to compute some properties, €.g.
* temperature
* diffusion constant

— finite difference

v(7) = ﬁ[ r(t +Ot) —r(t - 8t)] + O(St%)



Verlet Algorithm Performance Issues

* Time reversible
— forward time step
r(t+0t) =2r(t) —r(t = 3t) + LF (1)t

— replace Ot with —ot
r(t+(=01)) = 2r(t) = r(t = (=00) + L ¥ (t)(-01)*
r(t=0ot) = 2r(t) —r(t + o) + LF (1)1

— same algorithm, with same positions and forces, moves
system backward in time

* Numerical imprecision of adding large/small

numbers
O(3t") O(3t")

r(t+0t)—r(1)

r () ~|r(t = 0t LF(1)ot>

[ 7 /

o@Bt) O3t 0(3L)




Initial Velocity

* Random direction
— randomize each component independently

— randomize direction by choosing point on spherical
surface

* Magnitude consistent with desired temperature.
Choices:
— Maxwell-Boltzmann: ~ »rob(v 1 exp| =S mvi /7|
— Same for y, z components

* Be sure to shift so center-of-mass momentum 1s

Zero Pe=3 D Pix
Pix = DPix - P



Leapirog Algorithm

* Eliminates addition of small numbers O(ot?)
to differences in large ones O(0ot")

* Algorithm

r(t+0t) =r(t) + v(t + 5 31)0t
v(t+10t)=v(t—33t) + LF(t)dt



Leapirog Algorithm

* Eliminates addition of small numbers O(ot?)
to differences in large ones O(0ot")

* Algorithm

r(t+0t) =r(t) + v(t + 1 31)0t
v(t+10t)=v(t—33t) + LF(t)dt
* Mathematically equivalent to Verlet

algorithm
r(t +9t) =r(t) + Bt - 5 0t) + LF(1)Or [t



Leapirog Algorithm

* Eliminates addition of small numbers O(0t}) to
differences in large ones O(ot")

* Algorithm

r(t+0t) =r(t) + v(t + 1 31)0t
v(t+101) = v(t =531 +-LF(1)ot

* Mathematically equivalent to Verlet algorithm
r(t+0t) =r(t) + B(t - 1 0t) + L F(1) ot Pt

r(t) as eva.luated from r(1) = (i - 81) + v(1 - L 31) 3t
previous time step 2



Leapfrog Algorithm

* Eliminates addition of small numbers O(ot?)
to differences in large ones O(0ot")

* Algorithm

r(t+0t) =r(t) + v(t + 1 31)0t
v(t+101) = v(t =531 +-LF(1)ot

* Mathematically equivalent to Verlet

algorithm
r(t+0t) =r(t) + B(t - 1 0t) + L F(1) ot Pt

r(t) as eva.luated from r(1) = (i - 81) + v(1 - L 31) 3t
previous time step 2

r(t+30) =r(0) + Hr(t) —r(t = o)) + L¥(@)or’ n



Leapifrog Algorithm

* Eliminates addition of small numbers O(ot?)
to differences in large ones O(0ot")

* Algorithm

r(t+0t) =r(t) + v(t + 1 31)0t
v(t+101) = v(t =531 +-LF(1)ot
* Mathematically equivalent to Verlet

algorithm
r(t+0t) =r(t) + B(t - 1 0t) + L F(1) ot Pt

r(t) as eva.luated from r(1) = (i - 81) + v(1 - L 31) 3t
previous time step 2

r(t+30) =r(0) + Hr(t) —r(t = o)) + L¥(@)or’ n

_ o . ) . :
r(t+0t) =2r(t)—r(t —ot)+- F(t)Ot original Verlet algorithm



Leapfrog Algorithm: Flow Diagram

t-Ot t t-+0t

r Given current position, and
velocity at last half-step

\Y%

Pl

Schematic from Allen & Tildesley, Computer Simulation of Liquids




Leapfrog Algorithm: Flow Diagram

t-Ot t t-+0t

r Compute current force
\Y%
P

Schematic from Allen & Tildesley, Computer Simulation of Liquids




Leapfrog Algorithm: Flow Diagram

t-Ot t t-+0t

r Compute velocity at
next half-step

\Y%

P A

Schematic from Allen & Tildesley, Computer Simulation of Liquids




Leapfrog Algorithm: Flow Diagram

t-Ot t t-+0t

r Compute next position
\Y%
P

Schematic from Allen & Tildesley, Computer Simulation of Liquids




Leapfrog Algorithm: Flow Diagram

t-20t t-Ot t t+ot

Advance to next time step,
repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids




Leapfrog Algorithm Loose Ends

* Initialization

— how to get velocity at “previous time step”” when
starting out?

— simple approximation

v(tg = 01) = v(ty) = L F(ty) 5 Ot

* Obtaining the velocities
— 1nterpolate

v(?) :%gr(t +101)+v(1-1onH



Velocity Verlet algorithm

r(8t) = 1(0) + v(0) 8t + 1/2 a(r(0)) 6t 2+ b(t) 8t * + O(5t ) good to 2" order in &t
Do the Taylor expand for velocities
v(dt) = v(0) + 8t a(r(0)) + + O(5t 2) good to 1% order in 5t

To get V also accurate to the 2" order 1n &t we consider starting from 5t and
applying the rule backward in time (I.e. for a time —ot) so that we end up back at

r(0) = r(5t) -v(8t) St + 1/2 a(r(5t)) ot 2
v(5t) = (1(5t) - 1(0))/(5t) + 5t /2 a(r(5t))

Now using the position equation we have
r(ot) - r(0)=v(0) ot + 1/2 a(r(0)) ot 2

So we have v(ot) = v(0) + ot /2 [a(r(0)) + a(r(ot)) ]
Combining we have

r(ot) =r(0) + v(0) ot + 1/2 a(r(0)) ot 2

v(ot) =v(0) + ot /2 [a(r(0)) + a(r(ot)) ] Velocity Verlet



Velocity Verlet Algorithm

Round off advantage of leapfrog, but better treatment
of velocities

Algorithm
r(t+0t) =r(t) + v(£)t + L F(1)3t
V(¢ +01) = V(1) + L[ F(0) + F(t + 31)| Ot

Implemented 1n stages
— evaluate current force
— compute r at new time

— add current-force term to velocity (gives v at half-time

step)
— compute new force

— add new-force term to velocity

Also mathematically equivalent to Verlet algorithm
(in giving values of r)



Velocity Verlet Algorithm Flow Diagram

t-Ot t t-+0t

Given current position,
velocity, and force

Schematic from Allen & Tildesley, Computer Simulation of Liquids




Velocity Verlet Algorithm Flow Diagram

t-Ot t t-+0t

Compute new position

Schematic from Allen & Tildesley, Computer Simulation of Liquids




Velocity Verlet Algorithm Flow Diagram

t-Ot t t-+0t

Compute velocity at half step

Schematic from Allen & Tildesley, Computer Simulation of Liquids




Velocity Verlet Algorithm Flow Diagram

t-Ot t t-+0t

Compute force at new position

Schematic from Allen & Tildesley, Computer Simulation of Liquids




Velocity Verlet Algorithm Flow Diagram

t-Ot t t-+0t

Compute velocity at full step

Schematic from Allen & Tildesley, Computer Simulation of Liquids




Velocity Verlet Algorithm Flow Diagram

t-20t t-Ot t t+ot

Advance to next time step,
repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids




Lines of code for Leap-frog Verlet algorithm

/* Carry out half-timestep update of atomic velocities using old forces. */

velocity step(n_atoms, atom_vels, atom mass, delta, comp forces);
/* Carry out full-timestep update of atomic positions using half-timestep velocities. */

position_step(n_atoms, atom_coords, atom_vels, atom move,

scaled atom_coords, h_inv, h, delta, neigh switch);

/* Add short-range nonbonded forces to force accumulators. */
for (1=0; 1 <n_atoms; ++1) {
for ( k =0; k < NDIM; ++k)
comp_forces[i][k] +=f vdw_s[i][k] + f coul s[1][k];
b
/* Carry out half-timestep update of atomic velocities using new forces. */

velocity step(n_atoms, atom_vels, atom mass, delta, comp_ forces);



void velocity step(int n_atoms, double **atom_vels,
double *atom mass, double delta, double **comp forces)
{
int 1, k;

double delta over 2m;

/* Update velocities. */

for (1=0; 1 <n_atoms; ++1) {
delta_over_2m = delta /(2*atom_mass[i]) ;
for (k= 0; k <NDIM; ++k)

atom_vels[i][k] += delta_over 2m * comp_forces[i][k];



/* Carry out full-timestep update of atomic positions using half-timestep velocities. */
void position_step(int n_atoms, double **atom_coords,

double **atom_vels,

double **atom move, double **scaled atom_coords,

double **h_inv, double **h, double delta, int neigh switch)

{
int 1, k;
double dr[NDIM];
/* Update positions. */
for (1=0; 1 <n_atoms; ++1) {
for (k= 0; k <NDIM; ++k) {
dr[k] = delta * atom_vels[i][k];
atom_coords[1][k] += dr[k];
;)
/* If we are using periodic boundary conditions, calculate scaled atomic coordinates. */
scaled atomic coords(n_atoms, h_inv, atom_coords, scaled atom coords);

periodic_boundary conditions(n_atoms, h, scaled atom_ coords, atom_coords);



Velocity sampling routine

/* Sample atomic velocities from a Maxwellian distribution. */
void sample velocities(long *idum, double **atom_vels, int n_atom:s,
double *sqrt kT over m)
{
int 1, k;

double sqrt kT by m;

/* Choose Gaussian-distributed cartesian velocity components for each
atom, with zero mean and standard deviation equal to sqrt(kT/m). */
for (1=0;1<n_atoms; ++1) {
sqrt kT by m=sqrt kT over m]i];
for (k = 0; k <NDIM; ++k)
atom_vels[i][k] =sqrt kT by m * gasdev(idum);



Other Algorithms

Leap Frog: This can be derived from Verlet algorithm. Velocities at
half integer time step can be written as

v(t- 0t/2) = [ r(t) - r(t- ot) ]/ ot
v(t+ 6t/2) = [ r(t+dt) -r(t) ]/ ot

From the above two equation we get the expression for the new
position
r(t+ ot) = r(t) + ot v(t+ ot/2)
To update the velocity we use the expression from Verlet algorithm

v(t+ 8t/2) = v(t- 8t/2) + St a(t)

Note that velocities are not defined at the same time as the positions, so KE and
PE are also not defined at the same time, and hence we can not directly compute
the total energy in the Leap-Frog scheme



Higher Order algorithm: Predictor-corrector

Predictor: use the position and its first n derivatives at time ¢ (velocity, acceleration
etc.) to find the position and its first n derivatives (velocity, acceleration etc.) at time ¢+o

Force evaluation: Use the predicted position to compute the force and acceleration at
the predicted positions. The resulting acceleration will be in general different from the
“predicted acceleration” in previous step.
Corrector: use the new acceleration to correct the predicted position, velocities and
acceleration.
2 3 4
r(t+66) = () +v(0) 5t + 2 a(t) + 25 by + 2 () +...
2 6 24
ot* or’
v(t+01) =v(t) +a(t)or + 7b(t) + v c(t)+...

2

a(t+ot)=a(t)+b(t)ot + %c(t) +...

b(t+0ot)=b(t)+c(t)ot +...



The difference between the predicted (step 1) and calculated (step 2) acceleration
1s given by

NAa(t+0t)=a‘(t+0t)—a(t+0t)
and is used to correct the positions and velocities in the correction step as follows
re(¢+0t)=r(t+0ot)+c,Aa(t +or)
Vi(t+0t)=v(t+0t)+cla(t +0r)
a‘(t+ot)=a(t+0ot)+c,Aa(t+0r)

be(t+0t)=b(t+0t)+c,Na(t+0r)

Coefficients are tabulated for g-th order predictors (Gear): C,=1/6, C, =5/6, C,=1, C,
=1/3



How to set the time step

Adjust to get energy conservation to 1% of kinetic energy.

Even if errors are large, you are close to the exact
trajectory of a nearby physical system with a different
potential.

Since we don’t really know the potential surface that
accurately, this 1s satisfactory.

Leapfrog algorithm has a problem with round-off error.

Use the equivalent velocity Verlet instead:

r(t+ ot) = r(t) + ot [ v(t) +(ot /2) a(t)]
v(t+ ot /2) = v(t)+(ot /2) a(t)
v(t+ ot)=v(t+ ot /2) + (ot /2) a(t+ dt)




Linear Stability analysis for Harmonic oscillator

F(x)= —2x

Position Verlet scheme can |

(t+0)
(£ +0r)

A-¢*/2 e(1-&°/4)0

where S =[]

= S

he written as

L (2)

( t) (Home work)

0 and e=cwo¥

& 1-£°/2

Powers of S is bounded if £2<4

<2/
<Tp/27'[ p

T, =21r/w



How to increase time step?

Limiting factors: intra-molecular motions

Vibrational mode Wave number Period T, Tp/ZT[

(1/A) cm™ (Ac) fs (fs)
O-H, N-H stretch 3200-3600 9.8 3.1
C-H stretch 3000 11.1 3.5
C=C, C=N stretch 2100 15.9 5.1
H-O-H bend 1600 20.8 6.4
O-C-0O bend 700 47.6 15

Freeze or constrain the fast motion: make all bond, angle involving H
rigid



How to increase time step?

Multiple time steps algorithm

F — F;hort +F}0ng
or
F = Fshort +Fmed T Eong

Short-range interactions governs the intra-molecular motion, time scale
of which are very fast. In that time scale “long range” part of the
interaction hardly changes and need not be computed at same frequency
of the short range interactions.

Use Multiple time steps

»a time step to compute short-range interactions
»another time stop to compute medium range interactions
»another time step to compute long-range interactions



We can write the Liouville operator L as a sum of three operators that
characterize the scales of motions associated with different potential
components

+Lmed T L

slow

e(lL)ét —CXp Edt( Lfast + Lmed + leOW) E

Tuckerman, Berne, Martyna, JCP, 97, 1990 (1992)



Physical Quantities in Molecular Stmulation

State variables
— each variable has an associated “conjugate” variable
* temperature < energy (kT,E)
* pressure < volume (P,V)
* chemical potential < number of molecules (U,N)
— specification of state requires fixing one of each pair
— the dependent variable can be measured by the simulation
Configuration variables
— position, orientation, momentum of each atom or molecule
— energy, forces and torques
— time
Properties
— transport coefficients, free energy, structural quantities, etc.
Molecular model parameters
— characteristic energy, size, charge



Separation of the Energy

Total energy 1s sum of kinetic and potential parts
— E(p'.r") = K(p") + U(")
Kinetic energy 1s quadratic in momenta

K(p")=Y pi/2m

Kinetic contribution can be treated analytically in
partition function

—_ 2 _ N
0= 31\17 Idee B2 pi /2mIdrNe BU()
h>" N!
— 1|1 ¢7.N,~BUGY)
= vl l’dr e |
J thermal de Broglie wavelength
R -
N3N configuration integral P rtmkT

And 1t drops out of position averages

(4)= ﬁNL!J'drNA(rN)e_’BU(FN)



Simple Averages 1. Energy

Average energy

_ N N
)% g Jar B

Note thermodynamic connection

dInQ _ (A/KT) _
- - - Eintemal
a8 ~ 9(1/kT)

\E)=

Average kinetic energy
(K)= L [d" S L Py

= %NkT Equipartition of energy: kT/2 for each degree of freedom

Average potential energy
(U)= ﬁﬁjdrNU(rN)e_ﬁU(rN)



Simple Averages 2. Temperature

Need to measure temperature 1n microcanonical
ensemble (NVE) simulations

Define instantaneous kinetic temperature

T = L Z P,-z /m  More generally, divide by number of
3Nk molecular degrees of freedom instead of 3N

Thermodynamic temperature 1s then given as
ensemble average

T=(T
Relies on e<q>uipartition as developed 1n canonical

ensemble

A better formulation has been developed recently
(Thermostating)



Simple Averages 3a. Pressure

* From thermodynamics and bridge equation
040 :

_ _ ~pu ™) O
P'[$_QN Mf[TJm'e g

_NKT 1 r I
F== +ﬂ< Zu@xﬁ>

pairs 1,j




Simple Averages 4. Heat Capacity

* Example of a “2nd derivative” property

_[PEQ » B (B4
C,=f—x =-kB*F—Cs
Brty - P E s 5y

0 1 _
-2 % ' N NE,BE
B oo @ Ee

* Expressible in terms of fluctuations of the energy

— 2 2\ 21 Note: difference between two O(N?)
¢, = kpB %E > <E> ] quantities to give a quantity of O(N)

* Other 2nd-derivative or “fluctuation” properties

— 1sothermal compressibility
_ _1mro

= Cap T



Dimensions and Units 1. Magnitudes

Important extensive quantities
small in magnitude

— When expressed Symbol Definition Value
In macroscopic units L Constants
'y Boltzmann’s constant 1.3806x%1 0% I molec-KD
Small numbers are My Avagadro”s mumber 6.022=10%
mconvenient 2. Simuiation Variahles
. N Mumber of molecules ~ 103
TWO Ways tO magnlfy them ¥ aimulation cell wolume ~ 10 g ®
. . 0 Iiolecular mass ~ 0% katmolec
o Work Wlth atomlc_scale e Mumber density ~ 10¥ molec/m?
units E Energy (total) ~ 104 Jimaolec
A t tirne ~ 1012
°
pS’ amu’ nm or 3. Modef Variabics
— make dimensionless with o Sievatiable -1 0m
. . £ Energy vatiable ~ 10 JAnolec
characteristic values  Busd distance o
i Yibrational spring constant  ~ 10% Jim®

* model values of size,

energy, mass



Dimensions and Units 2. Scaling

In simulations it is often convenient to express quantities such as
temperature, density, pressure and the like in reduced units. This
means that we choose a convenient unit of energy, length and mass
and then express all the other quantities in terms of these basic
units. A natural choice of our basic units 1s the following

— S1z€ O
symhbol AMleaning Definition
— energy €
¥t dimensionless distance ¥ic
— IMasS m _ .
E* dimensionless energy Ele
T ditnensinnless temperature klie
In terms of these i dimensionless internal energy e
basic LlIlltS, all I dimensionless tume £ olxad €30 4]
other units follow o |
A dimensionless velocity v et
o dimensionless force Fale
¥ ditnensionless pressure FPo¥e

L* dimensionless self diffusion coefficient Dy o e




Why reduced Units?

* Many combinations of p, T, € and O all correspond to the same
state 1n reduced units. This 1s the law of corresponding states: the
same simulation can of a LJ model can be used to study the Argon
at 60 K and density 840 kg/m3 and Xe at 112 K and a density at
1617 kg/m3. In reduced unit both simulations corresponds to the
state point p = 0.5 and T = 0.5. Scaling by model parameters

* Inreduced units almost all quantities of interest are of order 1 (say
between 10-3 and 103). Hence 1f we suddenly find very large (or
very small) number 1n our simulations, suspect some error
somewhere.

* Simulation results obtained in reduced units can be translated back
into real units.

See the following table



Conversion of reduced Units to real Units for LJ argon system: €k, = 119.8 K,
0=3.405x10""" m, m = 0.03994 kg/mol

Quantity Reduced Real Units

Units
Temperatur T"=1 T=¢/k,=119.8K
e
Density ' =1 p = 1680 kg/m?
Time ot"=0.005 ot=1.09 x 104s

Pressure P*=1 P=41.9 MPa
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