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We review the existing simulation data and equations of state for the Len- 
nard-Jones (L J) fluid, and present new simulation results for both the cut and 
shifted and the full LJ potential. New parameters for the modified Benedict- 
Webb-Rubin (MBWR) equation of state used by Nicolas, Gubbins, Streett 
and Tildesley are presented. In contrast to previous equations, the new equa- 
tion is accurate for calculations of vapour-liquid equilibria. The equation also 
accurately correlates pressures and internal energies from the triple point to 
about 4.5 times the critical temperature over the entire fluid range. An equation 
of state for the cut and shifted LJ fluid is presented and compared with the 
simulation data of this work, and previously published Gibbs ensemble data. 
The MBWR equation of state can be extended to mixtures via the van der 
Waals one-fluid theory mixing rules. Calculations for binary fluid mixtures 
are found to be accurate when compared with Gibbs ensemble simulations. 

1. Introduction 

The Lennard-Jones 12-6 (LJ) potential is an important model for exploring the 
behaviour of  simple fluids, and has been used to study vapour-l iquid and l iquid- 
liquid equilibria, melting, behaviour of  fluids confined within small pores, small 
atomic clusters, a variety of  surface and transport properties, and so on. It has 
also been widely used as a reference fluid in perturbation treatments for more 
complex fluids. In many ways, the LJ model is oversimplified [1]; for example, the 
form of  the repulsive part of  the potential is incorrect, being insufficiently repulsive 
at short distances, the C6 dispersion coefficient is too high while higher dispersion 
coefficients are neglected, and its application to dense systems neglects three-body 
forces completely. Nevertheless, it captures much of  the essential physics of  simple 
fluids. 

There have been a number of  attempts to fit simulation data for the LJ fluid to an 
analytical equation of  state [2-12]. One of the most successful of  these is the equa- 
tion of  state of  Nicolas et al. [5]. The Nicolas et al. equation of  state uses a modified 
Benedic t -Webb-Rubin  (MBWR) equation having 33 parameters, 32 of  which are 
linear. This large number of adjustable parameters gives the equation sufficient 
flexibility to correlate data accurately over a wide range of  state conditions. 

The parameters for the Nicolas EOS were regressed from simulation data gen- 
erated by Nicolas et al. and by previous workers [2-5, 13-17], mainly from the late 
1960s and early 1970s. By current standards, these data were, for the most part, for 
small systems and short run times. In addition, there were few vapour-l iquid equili- 
brium (VLE) data available, and the critical point of  the LJ fluid was not known 
accurately. Nicolas et al. chose to constrain their equation of  state to give critical 
density and temperature values of  Pc = 0-35, and To* = 1-35, where p* = ( N / V ) ~  3, 
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N is the number of atoms, V is the volume of the system, tr is the LJ diameter, and 
T* = k T / e  where k is Boltzmann's constant, T is the temperature in Kelvins, and e 
is the LJ potential well depth. These values lay within the older estimates of the 
critical properties given by Verlet [13]. Recent simulations show that Tc* = 1.35 is 
too high. 

In recent years, the Gibbs ensemble Monte Carlo technique of Panagiotopoulos 
[18, 19] has proved particularly suitable for the direct determination of coexistence 
properties and for estimating critical points [20, 21]. Simulations in the Gibbs 
ensemble by several workers [18-20, 22, 23] have provided many more coexistence 
data for the LJ fluid, along with more reliable estimates for the critical temperature 
and density. The best current estimate of the critical point for the full LJ fluid 
predicted from Gibbs ensemble simulations is Pc = 0.304 + 0"006 and 
To* = 1.3164-0.006 [20, 21]. Lotfi et al. [11] have recently completed a study of 
the vapour-liquid coexistence properties of the pure LJ fluid by using isothermal- 
isobaric (NPT) ensemble simulations in conjunction with Widom's particle insertion 
method. Their data provide additional estimates of the critical properties as well as 
independent saturation densities and pressures. The data of Lotfi et al. are generally 
in very good agreement with the previous Gibbs ensemble results. 

The Nicolas et al. equation of state does not accurately predict the saturation 
properties when compared with the recent Gibbs ensemble and Lotfi et al. data. Such 
discrepancies are particularly troublesome when using an equation of state for the LJ 
fluid as a reference term in perturbation theories of molecular fluids. 

In this paper, we present new simulation data for the LJ fluid (section 2.2). These 
new data are used to refit the parameters in the MBWR equation (section 4). We do 
not use any VLE data in the fit, but we do constrain the parameters to give a critical 
density and temperature that agree with values estimated from the Gibbs ensemble 
and Lotfi et al. simulations. We demonstrate that the new parameters for the 
MBWR equation correlate accurately the simulation data, and that saturation 
vapour pressures and densities are predicted accurately when compared with recent 
simulation results. 

2. Simulation data for the Lennard-Jones fluid 

The full LJ potential is given by 

I(;) (;;1 ~b(r) = 4e (1) 

where e is the LJ well depth and ~r is the LJ atomic diameter. In computer simula- 
tions the potential must be truncated at some point r c < L/2 ,  where r c is the cutoff of 
the potential and L is the simulation box length. In practice, three types of truncated 
potential have been used: (1) cut potential (not shifted), (2) cut and shifted potential, 
and (3) cut and shifted force potential [24]. The cut and shifted force potential has 
the advantage in molecular dynamics (MD) simulations that there is no discontinu- 
ity in the potential or the force [5]. Corrections must be applied to the simulation 
results for each of these potentials in order to approximate the properties of the full 
LJ fluid. In each case, long range or tail corrections are computed by assuming that 
the pair correlation function is unity (g(r) -- 1) for r > r c. This leads to the following 
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tail corrections for the pressure Pl~c and internal energy Ul~c [24], 

32 0,2 tr 9 3 2 a 3 

Ulr c = ~ np re re 

In the vast majority of cases the LJ data published in the literature have made use of 
these long range corrections. 

2.1. Literature data 

Wood and Parker [25] at Los Alamos National Laboratory were the first to 
publish properties of the 3-dimensional LJ fluid from computer simulations. Since 
that time, many other authors have also performed simulations on the LJ fluid and 
published their findings. In table 1 we summarize the simulation results for much of 
the work on the thermodynamic properties of the LJ fluid. These include the follow- 
ing works: Wood and Parker, 1957 [25]; Verlet, 1967 [13]; Wood, 1968 [26]; 
Levesque and Verlet, 1969 [2]; Hansen and Verlet, 1969 [14]; Hansen, 1970 [3]; 
McDonald and Singer, 1972 [4]; Adams, 1975, 1976, and 1979 [16, 17, 27]; Nicolas 
et al., 1979 [5]; Nakanishi, 1986 [28]; Adachi et al., 1988 [8]; Shaw, 1988 [29]; Saager 
and Fisher, 1990 [30]; Lotfi et al., 1992 [11]; and Miyano, 1992 [12]. We note that 
Verlet and Weis [15] reported in 1972 previously published simulation results of 
[2, 3, 14], and augmented these data with either internal energy values or additional 
data points that were not reported in the original sources. 

2.2. Simulation data from this work 

We have performed simulations of the LJ fluid using both the MD and MC 
techniques. The bulk of the data are from MD simulations and are presented in 
table 2. For these simulations we used the cut and shifted potential ~bcs(r ) given by 

(~b(r) - 4)(rc) if r < rc 
~bcs(r)= 0 i f r > r  c. (4) 

We used a system size of 864 atoms and a cutoff of rc = 4"0a. Because of the large 
cutoff we expect any effect due to the discontinuity of the force at r c to be negligible. 
The full potential energies and pressures were recovered by adding back the poten- 
tial shift and applying the standard long range corrections given by equations (2) 
and (3). Vogelsang and Hoheisel [31] have used Baxter's continuation method to 
study the effect of the cutoff on thermodynamic properties. They found that for 
r c >_ 4.3a the normal long range corrections are practically exact for conditions close 
to the triple point. At higher temperatures or lower densities the effect of the cutoff 
is expected to be even smaller. We have compared our simulation results with data 
from very accurate simulations of Thompson [32] for a system of 1372 LJ atoms 
with the same cutoff. These independent data serve as a check of our coding and 
simulation technique. We found the agreement to be excellent. The temperature 
range covered in the simulations was 0.7 < T* _< 6.0. This covers a range from 
about the triple point (Tt*p ~ 0.69) to four and a half times the critical temperature 
(Tc* ~ 1.31). The densities ranged from 0.1 <_ p* <_ 1-25 at the highest temperature, 
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Table 2. Molecular dynamics simulation results of this work. The numbers in parentheses 
are the estimated errors of the mean in the last decimal place, e.g,, 8.51(2) = 8.51 -4-0-02. 

p* T* P* U* Pc*s Uc~ Steps 6t* 

0-1 6.0 0.6499(6) -0.478(2) 0.6525 -0.452 30000 0.002 
0.2 6.0 1.442(1) -0-942(2) 1.452 -0-890 30000 0-002 
0'3 6.0 2.465(3) -1.376(1) 2-489 -1.298 30000 0.002 
0.4 6.0 3-838(5) -1.785(3) 3.880 -1.681 20000 0.002 
0.5 6-0 5.77(1) -2.131 (3) 5-84 -2.000 20 000 0.002 
0.6 6.0 8.51(2) -2'382(5) 8.60 -2"225 20000 0.002 
0.7 6"0 12.43(2) -2.501(4) 12.56 -2.318 20000 0-002 
0.8 6.0 18.05(2) -2.416(4) 18.22 -2.207 20000 0,002 
0-9 6-0 26-00(2) -2-058(4) 26-21 - 1"823 20 000 0-004 
1.0 6.0 37.06(3) -1.361(6) 37.32 -1.100 20000 0-002 
1.1 6.0 52.25(2) -0.216(4) 52.57 0-072 20 000 0.002 
1.2 6.0 72.90(5) 1.502(9) 73.28 1.816 20000 0.002 
1.25 6.0 85.71(5) 2-612(8) 86.12 2.939 20000 0.002 

0.1 5.0 0.5324(4) -0.510(2) 0.5350 -0.484 30000 0.002 
0-2 5.0 1-166(2) -1.012(2) 1.176 -0-960 30000 0.002 
0.3 5.0 1.974(3) - 1,500(2) 1-998 - 1"422 30 000 0.002 
0-4 5.0 3-087 (7) - 1.955(2) 3.129 - 1.851 30 000 0.002 
0-5 5-0 4-668(8) -2-360(2) 4.733 -2-230 30000 0-002 
0.6 5-0 6.97(1) -2.688(4) 7-06 -2'531 20000 0.002 
0.7 5.0 10,30(2) -2.902(5) 10.43 -2.719 20000 0-002 
0.8 5.0 15.14(2) -2.948(4) 15-31 -2.739 20000 0.002 
0"9 5.0 22.22(2) -2.720(5) 22.43 -2"485 20 000 0.002 
1.0 5.0 32.23(3) -2.168(6) 32.49 -1-907 20000 0.002 
1.1 5.0 46.28(4) -1-165(7) 46.60 -0"877 20000 0.002 
1.2 5.0 65.46(5) 0.370(8) 65-84 0.684 20 000 0.002 

0.1 4-0 0-4154(6) -0-547(1) 0.4180 -0-521 30000 0-002 
0.2 4.0 0.894(2) - 1.088(2) 0.9045 - 1,036 30 000 0.002 
0"3 4.0 1.501(3) -1.614(2) 1.525 -1,536 30000 0.002 
0.4 4.0 2.319(4) -2.125(3) 2-361 -2.021 20000 0.002 
0.5 4.0 3-532(6) -2.605(3) 3.597 -2.475 20 000 0-002 
0.6 4.0 5.33(1) -3.017(4) 5.42 -2.860 20000 0.002 
0.7 4.0 8.044(1) -3-335(4) 8" 172 -3.152 20 000 0-002 
0.8 4.0 12.14(2) -3.494(5) 12-31 -3.285 20000 0.002 
0.9 4.0 18.24(1) -3.415(3) 18.45 -3.180 20000 0.002 
1.0 4.0 27-11 (2) -3-023(4) 27.37 -2.762 20 000 0.002 
1.1 4.0 39-74(4) -2-217(8) 40-05 - 1.929 20 000 0-002 
1.2 4.0 57,41(2) -0.866(3) 57.79 -0.552 20000 0.002 

0.l 3'0 0.2984(1) -0.592(2) 0.3010 -0-566 30000 0.003 
0.2 3.0 0.615(1) -1.178(2) 0.625 -1.126 30000 0.003 
0"3 3.0 0.999(2) - 1.751 (2) 1"023 - 1.673 30 000 0.003 
0.4 3-0 1.529(5) -2.314(2) 1 .571 -2.210 20000 0.003 
0.5 3-0 2.336(8) -2.860(2) 2-401 -2.729 20 000 0.003 
0.6 3.0 3.60(1) -3.369(3) 3.69 -3-212 20000 0-003 
0-7 3-0 5-65(1) -3-795(2) 5"78 -3.612 20000 0.003 
0-8 3.0 8.92(1) -4.083(3) 9.09 -3.874 20000 0.003 
0.9 3"0 13-95(1) -4.170(3) 14.16 -3.935 20000 0,003 
1.0 3'0 21.52(2) -3.967(3) 21.78 -3.705 20000 0.002 
1.1 3-0 32.64(2) -3.365(4) 32.96 -3-077 20 000 0.002 
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Table 2. Continued 

p* T* P* U* P~s U s Steps fit* 

0.1 2.5 0.2383(3) -0"625(2) 0.2409 -0"599 30000 0.003 
0-2 2-5 0,472(1) -1.234(3) 0,482 -1.182 30000 0,003 
0"3 2.5 0.746(2) -1-826(2) 0.770 -1-748 30000 0.003 
0-4 2.5 1.123(2) -2.419(2) 1.165 -2,315 40000 0-003 
0"5 2.5 1.706(4) -3.002(2) 1.771 -2.871 20000 0,003 
0.6 2.5 2-71(1) -3,553(2) 2-80 -3,396 20000 0.003 
0-7 2.5 4.365(7) -4.043(2) 4.493 -3,860 20 000 0,003 
0.8 2.5 7-17(1) -4.404(2) 7.34 -4.195 20000 0,003 
0-9 2-5 11.61(1) -4.583(3) 11-82 -4.348 20000 0,003 
1 '0 2.5 18.47(2) -4,484(4) 18.73 -4-222 20 000 0,002 
1.05 2.5 23.18(1) -4.284(2) 23.47 -4.009 20000 0.003 

0"1 2.0 0"1776(2 )  -0.669(2) 0-1802 -0.643 30000 0.003 
0.2 2.0 0.329(1) -1.308(3) 0.339 -1-256 30000 0.003 
0.3 2.0 0 " 4 8 9 ( 2 )  -1.922(3) 0-513 -1-844 30000 0.003 
0.4 2.0 0,700(3) -2.539(3) 0.742 -2-435 20000 0.003 
0"5 2.0 1.071(4) -3,149(2) 1.136 -3.018 20000 0-003 
0.6 2.0 1.75(1) -3-747(2) 1.84 -3,590 20000 0.003 
0"7 2.0 3.028(7) -4.300(1) 3"156 -4.117 20000 0-003 
0.8 2.0 5.285(7) -4,752(1) 5 .453 -4.543 20000 0.003 
0"9 2.0 9"12(1) -5.025(2) 9"33 -4,790 20000 0-003 
1,0 2.0 15.20(2) -5.040(4) 15-46 -4.778 20 000 0.003 
1,05 2.0 1 9 - 4 6 ( 2 )  -4.904(4) 19-75 -4.629 20000 0-003 

0,1 1-8 0,1533(2) -0"689(2) 0.1559 -0.663 50000 0,004 
0,1 1-8 0.1538(2) -0,683(2) 0-1564 -0.657 30000 0-004 
0.2 1.8 0,2704(8) -1,352(3) 0"2808 -1.299 30000 0.004 
0.3 1-8 0.384(1) -1.973(2) 0-4076 -1.894 30000 0-004 
0.4 1.8 0.538(2) -2,592(3) 0"580 -2,487 20000 0.004 
0.5 1.8 0,818(4) -3.210(2) 0.883 -3.079 20000 0.004 
0.6 1.8 1.364(7) -3.831(2) 1-458 -3.674 20000 0-004 
0-7 1-8 2-46(1) -4-410(2) 2.59 -4.227 20000 0.004 
0.8 1.8 4.51(1) -4.895(2) 4.68 -4,686 20000 0.004 
0-9 1.8 8.06(1) -5.211 (2) 8.27 -4.976 20 000 0.004 
1.0 1.8 13.83(2) -5.272(3) 14.09 -5,010 20000 0.004 

0.1 1-6 0.1288(3) -0.717(3) 0,1314 -0.691 30000 0.004 
0.2 1.6 0.2119(7) -1-401(5) 0.2223 -1,348 30000 0,004 
0-3 1-6 0.277(1) -2.030(6) 0,301 -1.951 30000 0.003 
0.4 1.6 0.363(3) -2.661(4) 0.405 -2.556 20000 0.004 
0-5 1.6 0.552(3) -3.284(2) 0-617 -3.153 20000 0.004 
0.6 1.6 0,967(4) -3-916(1) 1.061 -3-759 20000 0-004 
0.7 1.6 1.889(7) -4.519(1) 2.017 -4.336 20000 0.004 
0.8 1.6 3.69(1) -5-045(2) 3.86 -4.836 20000 0,004 
0-9 1-6 6-957(7) -5.406(1) 7.169 -5.171 20000 0-004 
1.0 1.6 12.39(1) -5-517(2) 12.65 -5,255 20000 0-004 
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Table 2. Continued 

p* T* P* U* P~s U~*s Steps tSt* 

O'l 1"4 01035(3) -0-766(3) 0-I061 -0"740 30000 0"004 
0"2 1 '4 O- 1524(4) - 1 "483 (4) O' 1628 - 1-430 30 000 0"004 
0"3 1"4 0"172(1) -2'136(6) 0.196 -2"057 20000 0-004 
0"4 1.4 0" 196(2) -2"74(5) 0.238 -2"64 20 000 0"004 
0"5 1.4 0.281(5) -3.366(3) 0-346 -3.235 20000 0.004 
0-6 1"4 0'565(2) -4"006(1) 0.659 -3"849 20000 0"004 
0"7 1.4 1.292(5) -4.637(1) 1.420 -4.454 20 000 0.004 
0"8 1"4 2"856(8) -5'199(2) 3.024 -4"990 20000 0"004 
0"9 1"4 5-795(8) -5.612(2) 6.007 -5"377 20000 0.004 
1-0 1'4 10-86(1) -5"778(3) 11.12 -5 '516 20000 0"004 

0' 1 1"3 0"0909(2) -0"795(4) 0-0935 -0"768 30 000 0.004 
0-2 1.3 0-1216(6) -1.544(4) 0.1321 -1'491 30000 0.004 
0"4 1"3 0' 115(2) -2"803(7) 0-157 -2"698 20 000 0.004 
0"5 1"3 0.152(3) -3-412(3) 0.217 -3"281 20000 0'004 
0"6 1"3 0"358(4) -4.056(2) 0-452 -3"899 20000 0.004 
0"7 l-3 0-981(9) -4-697(1) 1"109 -4-514 20000 0"004 
0"8 1'3 2-412(7) -5"279(1) 2.580 -5"070 20000 0'004 
0"9 1"3 5.21(1) -5.714(2) 5.42 -5"479 .20000 0.004 
0"95 1-3 7.32(1) -5-851(3) 7.56 -5"602 20000 0.004 

0"05 l '2 0"048 87(6) -0.421(2) 0.049 52 -0"408 40 000 0.004 
0" 1 1-2 0-0770(4) -0"854(8) 0.0796 -0"827 30 000 0.004 
0"5 1"2 0.017(5) -3-466(7) 0"082 -3"335 20000 0"004 
0"6 1"2 0"148(3) -4'103(1) 0-242 -3"946 20000 0.004 
0'7 1.2 0"673(6) -4.757(1) 0.801 -4.574 20000 0-004 
0"8 1'2 1"967(6) -5"362(1) 2-135 -5"153 20000 0-004 
0"9 1"2 4.57(1) -5"827(2) 4"78 -5"592 20000 0"004 
0-95 1"2 6-62(1) -5"973(2) 6.86 -5,724 20000 0.004 

0"05 1" 15 0-045 75(6) -0'438(3) 0.0464 -0,425 40 000 0.004 
0' 1 1" 15 0'0704(3) -0"863(7) 0-0730 -0,836 40 000 0.004 
0"55 1"15 -0"031(3) -3-806(2) 0'048 -3 '662 20000 0.004 
0"6 1-15 0-043 (7) -4.129(2) 0" 137 -3"972 40 000 0"004 
0,7 1-15 0"498(5) -4-790(1) 0"626 -4"607 20000 0"004 
0"8 1.15 1-739(7) -5"403(1) 1.907 -5.194 20000 0.004 
0.9 1"15 4.26(1) -5"882(2) 4-47 -5.647 20000 0.004 
0"95 1-15 6-24(1) -6"040(2) 6"48 -5.791 20 000 0.004 

0.05 1-1 0-0431 (1) -0.444(2) 0.0438 -0.431 40 000 0.004 
0.55 1"1 -0'106(3) -3"844(3) -0"027 -3.700 30000 0"004 
0.6 1.1 -0"068(4) -4.156(2) 0.026 -3.999 20 000 0.004 
0.7 1.1 0"346(4) -4.824(1) 0.474 -4-641 20 000 0"004 
0.8 1.1 l'495(9) -5"448(2) 1"663 -5-239 20000 0"004 
0.9 1.1 3"92(1) -5-941(2) 4'13 -5.706 20000 0"004 
0.95 1.1 5"889(7) -6.099(1) 6-125 -5.850 20000 0.004 

0.05 1-05 0'0401 (1) -0"460(3) 0"0408 -0.447 40 000 0.004 
0.6 1"05 -0"172(5) -4.189(3) -0"078 -4.032 20 000 0.004 
0.7 1-05 0.179(4) -4"858(1) 0.307 -4.675 20000 0.004 
0.8 1-05 1'259(8) -5"490(2) 1.427 -5.281 20000 0.004 
0'9 1"05 3"597(9) -5"999(2) 3-809 -5.764 20 000 0.004 
0.95 1"05 5"47(1) -6.172(2) 5"71 -5-923 20000 0"004 
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Table 2. Continued 

p* T* P* U* P~s U~s Steps St* 

0"05 1-0 0"0368(1)  -0"483(5) 0"0375 -0"469 40000 0"004 
0"6 1'0 -0"272(5) -4"223(3) -0"178 -4"066 20000 0-004 
0-7 1"0 0 " 0 1 5 ( 5 )  -4-887(1) 0"143 -4"704 20000 0"004 
0"8 1-0 1 " 0 1 1 ( 6 )  -5"535(1) 1"179 -5'326 20000 0"004 
0"9 1"0 3 " 2 8 ( 1 )  -6"055(2) 3"49 -5"819 20000 0"004 
0"95 1'0 5"131 (8) -6"231 (2) 5"367 -5"982 20 000 0"004 

0"01 0-95 0"00895(1) -0'096(2) 0"00898 -0"093 40000 0"004 
0-05 0"95 0"0339(1)  -0-504(7) 0"0346 -0"490 40000 0-004 
0"6 095 -0"371(6) -4'262(5) -0-277 -4105 20 000 0"004 
0-7 0"95 -0"149(3) -4-921(1) -0"021 -4"738 20000 0-004 
0"8 0-95 0"770(7 )  -5"579(1) 0'938 -5"370 20000 0"004 
0"9 0"95 2-93(1) -6'117(2) 3-14 -5"882 20000 0"004 
0"95 0"95 4"712(8 )  -6"302(1) 4'948 -6"053 20000 0"004 

0'005 0-9 0"004 36(3) -0"051 (2) 0"004 37 -0"050 40 000 0"004 
0"01 0'9 0-00842(1) -0"102(1) 0-00845 -0"099 40000 0"004 
0"65 0-9 -0"461(6) -4"616(2) -0"350 -4"446 20000 0-004 
0"7 09 -0"317(5) -4"962(2) -0"189 -4"779 20000 0004 
0"8 0"9 0 " 5 3 4 ( 7 )  -5"623(1) 0"702 -5-414 20000 0"004 
09 0"9 2 " 5 8 3 ( 9 )  -6-176(2) 2"795 -5"941 20000 0"004 

0"005 0'85 0"004 11(1) -0"048(1) 0"004 12 -0"047 150000 0"006 
0"005 0"85 0-00409(4) -0"0559(7) 0-004 10 -0-0546 40000 0"004 
001 0"85 0"00791(1) -0-104(1) 0"00794 -0"101 40000 0-004 
0-7 0"85 -0"487(3) -4"995(1) -0"359 -4"812 20000 0'004 
0"8 0"85 0"273(7 )  -5"670(1) 0'441 -5"461 20000 0"004 
0"9 085 2 " 2 4 ( 1 )  -6"236(2) 2"45 -6"000 20 000 0"004 

0'005 0"8 0-00384(1) -0"054(1) 0"00385 -0053 150000 0"006 
0"005 0"8 0'003 84(4) -0-056(1) 0"003 85 -0"055 40000 0-004 
0"01 0"8 0"007 36(1) -0-114(2) 0'007 39 -0" 111 40 000 0-004 
0-7 0'8 -0"649(5) -5"034(2) -0"521 -4"851 20000 0"004 
0"8 0"8 0 " 0 1 4 ( 7 )  -5"717(1) 0"182 -5-508 20000 0"004 
0'9 0"8 1 " 8 7 ( 1 )  -6"302(2) 2"08 -6"066 20000 0"004 
0"9 0-8 1 " 8 7 ( 1 )  -6'301(2) 2"08 -6"065 20000 0-004 

0"005 0'75 0003 59(1) -0"0554(7) 0-003 60 -0-0540 150 000 0"006 
0"005 0-75 0"003 58(5) -0"0613(8) 0"003 59 -0"0599 40000 0-004 
0'01 0'75 0"00684(1) -0"115(2) 0-00687 -0112 100000 0"006 
0"01 0-75 0'00685(1) -0"113(1) 0"00688 -0"110 40000 0'004 
0"7 0"75 -0"834(7) -5"070(2) -0'706 -4"887 20000 0"004 
0"8 0-75 -0"256(5) -5"765(1) -0"088 -5"556 20000 0-004 
0"9 0"75 1 -503 (9 )  -6"365(2) 1-715 -6-129 20000 0"004 

0"005 0"7 0-003 33(1) -0"0596(6) 0-003 33 -0-0606 40 000 0"004 
0"005 0"7 0"003 32(1) -0-062(1) 0"003 34 -0"058 150 000 0"006 
0-8 0"7 -0"525(7) -5-815(1) -0"357 -5"606 20000 0"004 
0"9 0"7 1 " 1 4 ( 1 )  -6-429(2) 1"35 -6"193 20000 0-004 
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T* = 6"0, to 0-005 < p* _< 0-9 at the lowest temperature, T* = 0.7. Liquid-like state 
points were equilibrated until the root-mean-square (r.m.s.) displacement for the 
system reached 3cr or more. For the low density points, equilibration was carried out 
for 5 000 to 20 000 time steps, rather than for a given r.m.s, displacement. Averages 
were collected from runs of 2 • 104 time steps for the liquid-like densities and runs 
of 4 • 104 time steps for low density state points. At the lowest density (p* --- 0.005) 
we repeated some runs, taking data for 1.5 • 105 time steps. The sample variances of  
the mean for pressure and internal energy were calculated by dividing the data- 
taking run into ten sub-blocks. The computed means from each of these sub-blocks 
were used to calculate the sample variance of the mean as described by Bishop and 
Frinks [33]. We also report in table 2 the pressures P~s and internal energies Ue~ for 
the fluid interacting through the cut and shifted potential, equation (4). The estima- 
ted errors are approximately the same as values reported for P* and U* in table 2. 

Our data set includes some points in the metastable regions for both the vapour-  
liquid and liquid-solid phase transitions. We have, however, been careful not to 
sample regions past the spinodal curve when we knew its approximate location a 
priori. We fitted the pressure and internal energy data to two different rational 
polynomials in order to identify any points that did not fit smoothly with the rest 
of the data. Using this criterion we excluded several data points that appeared to be 
in the unstable vapour-liquid region. These points are not included in table 2, nor 
were they included in the fitting procedure of section 4.1. 

We used the velocity Verlet [34] algorithm for integrating the equations of 
motion, and simple momentum scaling at every time step to sample the N V T  
ensemble. When using molecular dynamics it is important to choose a time step fit 
small enough to solve the equations of motion accurately, but large enough to 
sample phase space adequately. Because our calculations covered such a wide range 
of densities and temperatures we did not use the same time step at every state point. 
We have performed short N V E  ensemble simulations at various temperatures and 
densities in order to choose a 6 t*= (St/~r)(e/m) 1/2 that gives good total energy 
conservation, i.e., fluctuations in total energy, (fi~2)1/2, on the order of 10 -4, where 
9ff is the Hamiltonian of the system. The actual time step used for each run is listed 
in table 2. 
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Figure 1. The T*-p* projection of the MD simulation points reported in this work. The 
parameters in the equation were regressed from these data. 
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We plot the temperature-density range covered by our MD simulations in figure 1. 
We have also plotted the vapour-liquid phase envelope and the solid-liquid coexis- 
tence curves. The vapour-liquid curve is from calculations made with the new 
MBW R parameters of this work. The solid-liquid curves were sketched from the 
simulation data of Chokappa and Clancy [35] and Hansen and Verlet [14]. The best 
estimate for the triple point temperature from these references is Ttp ~ 0.69. 

Results of our MC simulations are presented in table 3. We used the cut potential 
on a system of 500 atoms and conventional N V T  MC. The cutoff varied, but in all 
cases r c > 4-0or, with the specific cutoff listed in table 3. The standard long range 
corrections given by equations (2) and (3) were applied. We typically equilibrated 
the system for 2.5 x 106 configurations, followed by averaging for approximately 
1-5 • 107 configurations. The maximum displacement step size was adjusted during 
equilibration to achieve an acceptance ratio of about 40%. We also collected g (r) 
data from both the MD and MC simulations for other purposes. The MC data 
provide an independent route to thermodynamic properties of the LJ fluid, and 
thus serve as an additional check of our coding. The MD and MC simulation results 
generally agree to within one standard deviation; a few points lie within two 
standard deviations. 

3. Equations of state for the Lennard-Jones fluid 

Equations of state for the LJ fluid can be divided roughly into two groups: (1) 
equations having some theoretical basis (semitheoretical), and (2) purely empirical 
equations of state. This distinction can become blurred at times because semi- 
theoretical equations can contain a large number of adjustable parameters, making 
them much like empirical equations. In this section we review briefly the available 
equations of state for the LJ fluid. We present a summary of the published equations 
of state in table 4. 

Several equations of state have been published that are based on perturbation 

Table 3. Monte Carlo simulation results of this work. 

O* T* P* U* rcla 

0"5 5.0 4"654(3) -2"365(1) 4"0 
0"1 2-0 0"1777(2) -0"667(1) 5"0 
0.2 2-0 0.3290(6) -1'306(1) 5"0 
0.4 2.0 0'705(1) -2"538(2) 5.0 
0"5 2"0 1-069(3) -3"149(2) 5.0 
0-6 2"0 1-756(7) -3.746(2) 4.71 
0-7 2'0 3.024(7) -4.300(2) 4.47 
0-8 2"0 5.28(1) -4-753(3) 4.27 
0"9 2.0 9"09(2) -5"030(4) 4-11 
0.1 1"2 0.0776(1) -0.840(2) 4.0 
0.1 1.15 0-0707(1) -0-869(1) 4.0 
0.05 1"0 0.0369(1) -0-478(1) 5.0 
0"6 1-0 -0.269(9) -4.228(6) 4-71 
0-7 1"0 0"019(10) -4.890(2) 4.47 
0"8 1'0 1.03(1) -5.533(1) 4.27 
0"8 1"0 1"009(3) -5.5357(6) 4"0 
0-9 1"0 3.24(2) -6-062(4) 4' 11 



The Lennard-Jones equation of  state 601 

o 

0 o~ 
c~ 

o~ 

0 
~J 

Z 

% 

0 

�9 "o "~ ~ 

~-', ~ o  ~ . - ~  

~J ~ "~ "~ ~ 0 

0 ~ 0 " ~ ' 0  

" 0 0 ~  

0 0 .~ .~ . 

, ~ . . ~  
"~ ~ ,.~ 

~ ' ~  ~ o ~  - -  

�9 ~ 

~ . . 

o ~ ~ o ~  o ~ ~, ,~  
~ 0 ~ " ~  ~ ~ ~ - ' L Z  ~ 

~ = ~  0 ~,.~ ~" ~=~.~ e~.._ ~j ~..~ 

oo o'~ ~ 

~ ~ r.,,~ o~ 

~ e ~  ~ < z  ~ 

o~ 

0 

Io 
li II 



602 J .K .  Johnson et al. 

expansions about a repulsive reference fluid. Levesque and Verlet [2] were the first to 
publish an equation of state for the LJ fluid. They presented two semi-theoretical 
equations based on a A expansion of the attractive part of the potential [36]. The first 
and second order perturbation terms were fitted to polynomials in density. Hansen 
[3] fitted a polynomial for the equation of state for a repulsive r -12 potential fluid, 
and another polynomial for the first order correction term. Ree [7] later modified 
Hansen's equation by adding a second polynomial for the attractive term that 
extended the range of applicability. Nezbeda and Aim [9] developed an equation 
of state based on a first order Weeks-Chandler-Andersen (WCA) perturbation 
theory [37]. They fitted the attractive term to a polynomial in density and a 
power-law in temperature. They included pressures, but no internal energies in their 
regression. Song and Mason [10] developed a WCA-like expansion that depends only 
on the hard sphere equation of state [38] and three integrals involving the pair 
potential. Their equation contains no adjustable parameters, but is not as accurate 
as the other semitheoretical equations. 

The strictly empirical equations of state include the following: McDonald and 
Singer [4], Nicolas et al. [5], S~s and Malijevsk~, [6], Adachi et al. [8] and Miyano [12]. 
Of these, all but McDonald and Singer used some modified form of the Benedict- 
Webb-Rubin equation. Because we are using the same form as Nicolas et al. we will 
discuss their work in more detail. They used a modification of the Benedict-Webb- 
Rubin equation of state due to Jacobsen and Stewart [39] that contains 32 linear 
parameters and one nonlinear parameter. This equation has been the most widely 
used and arguably the most successful of any yet developed for the LJ fluid. The 
success of the Nicolas equation is probably due to the wide fluid range that it 
correlates accurately. The MBWR equation has sufficient flexibility to reproduce 
the properties of the LJ fluid from low to fairly high temperatures and from gas 
to liquid densities. The equation contains temperature-dependent expressions to 
account for the first few virial coefficients. While these expressions are entirely 
empirical, they can give good results if the parameters are regressed properly. This 
is an advantage over equations of state based on perturbation theories, which are 
usually inaccurate for low to moderate densities. The disadvantage of an empirical 
equation of state is that it is not reliable outside the range for which the parameters 
were determined, and may even give unphysical results. Nicolas et al. regressed the 
32 linear parameters based on a data set containing most of the LJ data then 
published. They also included exact second virial coefficients in the range 
0.625 < T* < 20, and 28 low density points generated from the virial series using 
the first five virial coefficients as calculated by Barker et al. [40]. They constrained 
their linear optimization to ensure that the equation gave critical constants of 
To* = 1.35, Pe = 0"35 and Pc = 0.14. The nonlinear parameter in the MBWR equa- 
tion was optimized by a manual 1-dimensional search. 

In passing we note that Lotfi et al. [11] fitted saturation vapour pressures to a 
Clausius-Clapeyron equation, and saturation densities to a Guggenheim-like 
expression [41]. While these equations do not constitute a proper equation of 
state, they do provide accurate correlations for saturation properties. Lotfi et al. 
also presented a correlation for the saturation chemical potential and the enthalpy of 
vaporization. The data for these correlations came from their simulations [11]. 
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Table 5. The a i temperature dependent coefficients for the Helmholtz free energy equation 
(5). The xj's are the adjustable parameters in the equation of state. 

i ai 

1 X 1 T* + Xzv/T * + x 3 + x4/T* + x s / T  .2 
2 x6T,  .+.x 7 + x s / T ,  + x 9 / T  2 
3 Xl0 T* +xll +Xl2/T* 
4 Xl3 
5 X14/T* + X15/T .2 
6 Xl6/Z* 
7 Xl7/T~2+xls/T .2 
8 xI9/T 

4. Modified Benedict-Webb-Rubin equation of state 

The MBWR equation of state used here is the same as that used by Nicolas et aL 
[5], and contains 32 linear parameters and one nonlinear parameter. We started by 
writing the expression for the Helmholtz free energy. We worked in reduced units so 
A*r =Ar /Ne  where Ar is the residual Helmholtz free energy of the fluid 
(Ar(N , V, T) =- A(N, V, T) - Aid(N , V, T), where Aid  is the ideal gas value). A r is 
given by 

8 *i 6 

A r = " " *  ~ aiPi + E biGi' (5) 
i=1 i=1 

where the coefficients ai and bi are functions of temperature only. These coefficients 
contain the 32 linear parameters in the MBWR equation. The G i functions contain 
exponentials of the density and the one nonlinear parameter. The functional forms of 
the ai, bi, and Gi are given in tables 5, 6 and 7, respectively. From equation (5) we 
can derive all other thermodynamic properties. The pressure is given by 

p* = p*r* + p*2 f OA*~ 
\ Op* J r*,N' (6) 

where P* = Pa3/e includes the ideal gas contribution. Substituting equation (5) into 
equation (6) gives 

Table 6. The bi temperature dependent coefficients for the Helmholtz free energy equation 
(5). The xj's are the adjustable parameters in the equation of state. 

i b i 

1 x20/T .2 + x21/T .3, 
2 x22/T~ 2 + x23/T*~ 
3 x24/T 2 q_ x25/T*~ 
4 x26/T .2 q- x27/T* ~ 
5 x281T: 2 + x291T* ~ 
6 X30/T 2.4_ X31/T*~ "+- X32 / T *4 
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Table 7. The G i density dependent coefficients for the Helmholtz free energy equation (5), 
where F = exp (-3,p'2), and -y is the nonlinear adjustable parameter. We have chosen 

= 3 in this work. 

i G i 

1 (1 - V2)/(2"y ) 
2 -(Fp,Z - 2G1)/(23') 
3 - ( F p ,  ~ - 4G2)/(27) 
4 - ( F p  6 _ 6G3)/(27) 
5 - ( r p :  8 -- 8G4)/(2"/) 
6 - ( F p  1o _ 10G5)/(27) 

8 6 

P* = p'T* -t- ~ aip *(i+l) @ F ~  bip *(2i+1), ( 7 )  

i=1 i=1 

where F = exp( -Tp  .2 ), 7 is the nonlinear adjustable parameter, and the coefficients 
ai and b i are the same functions that appear in the Helmholtz free energy expression 
of  equation (5). The residual (configurational) internal energy U* = U r / N e  is given 
by 

u; = - r  *2 (8) 
\ OT* Jp, ,u" 

Using equation (5) in equation (8) gives 

8 C *i 6 
v;  c,o + : ~-'~diGi, (9) 

i i=1 i=1 

where the coefficients ci and di are given in tables 8 and 9, and the G i functions are 
given in table 7. One final property is the Gibbs free energy per atom which, for the 
pure fluid case, is equal to the chemical potential: 

Gr P* 
G* - Are - #r = Ar + -~- - T*, (10) 

where A~ is given by equation (5) and P* is given by equation (7). 

Table 8. The ci temperature dependent coefficients for the internal energy equation (8). The 
xj's are the adjustable parameters in the equation of state. 

i ci 

1 x2x/T*/2  + x 3 + 2x4/T* + 3 x s / T  .2 
2 x7 + 2xs /T*  + 3x9 /T  .2 
3 x n  + 2x12/T* 
4 x13 
5 2x14/T* + 3Xls/T .2 
6 2x16/T* 
7 2x17/T* + 3 x l s / T  .2 
8 3x19/T .2 
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Table 9. The di temperature dependent coefficients for the internal energy equation (8). The 
xTs are the adjustable parameters in the equation of state. 

i d~ 

1 3X2o/T .2 + 4x2I/T .3 
2 3x22/T .2 + 5x23/T .4 
3 3x24/T .2 + 4x25/T .3 
4 3x26/T~22 + 5x27/T .4 
5 3x28/T,~ + 4x29/T .3 
6 3X3o/T ~ + 4x31/T .3 + 5X32/T .4 

4.1. Regression o f  parameters 

We have constrained the equation of  state to give a specified critical temperature 
and density. The MBWR equation is classical and gives a critical exponent of 1/2. 
Thus, it is incapable of giving a p - T  critical region that is sufficiently fiat. Even so, it 
is important for the equation to give good values of  the critical constants. The early 
estimates for the critical constants [13] were Tc* ----- 1.36 + 0.04 and pc = 0.31 + 0.03. 
Later, Adams [27] estimated Tc = 1.30 + 0.02 and p~ --0.33 + 0.03. Smit [20, 21] 
gave estimates based on fitting Gibbs ensemble data to the critical scaling law for 
density and to the law of  rectilinear diameters. His estimates are Te* = 1.316 + 0-006 
and Pc = 0.304 + 0.006. Smit used the 3-dimensional critical exponent,/3 = 0.32, in 
his fitting procedure. Lotfi et al. [11] made estimates of  To* = 1.31 and p~ = 0-314 
based on their VLE data for the LJ fluid. They did not use the law of  rectilinear 
diameters to determine the critical density; however, their data follow a line of 
rectilinear diameters extremely well. Applying the law of  rectilinear diameters to 
their data gives p~ = 0.310, slightly lower than the value of  0.314 they report. If  
we plot the Gibbs ensemble data on the same plot as the data of Lotfi et al. we notice 
that the low temperature Gibbs ensemble data fall on the same line of rectilinear 
diameters as the data of  Lotfi et al. The Gibbs ensemble data for T* = 1.25 and 
above deviate from the Lotfi et al. data, but the uncertainties in the Gibbs ensemble 
data are also large, so that the data agree to within the estimated errors. We have 
chosen to use pc -- 0.310 and Tc = 1.313 as the best estimates for the critical density 
and temperature in our equation of  state. The critical temperature used is an average 
of  the estimates from the Gibbs ensemble data and from Lotfi's data. The value of  p~ 
depends on To* through the line of rectilinear diameters. However, using the slope 
from the Lotfi et al. data we find that to three significant figures the value of  p~ does 
not change in going from a critical temperature of  1.310 to 1-313. The constraints for 
the critical point are 

0 / , ,  
Tr162 

and 

_-o. 
0P2,]T to.pc 

(12) 

We have not specified a value of  the critical pressure in the fitting procedure because 
P~ is not known accurately from simulations. Given the above values of  To* and p~, 
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Figure 2. The deviation plot for the reduced second virial coefficient, B* = 3B/(2n~r3), as 
correlated by the new MBWR parameters (solid line) and the original Nicolas et al. 
parameters (dot-dashed line). B~*~ is the exact second virial coefficient. 

the equa t ion  o f  s tate wi th  the new pa rame te r s  gives Pc = 0" 13. 
The  first five pa rame te r s  in the M B W R  equa t ion  (Xl-Xs) de te rmine  the second 

vir ial  coefficient. W e  have genera ted  exact  second vir ial  coefficients a t  315 tempera-  
tures in the range 0.66 < T* < 20 and  have used these d a t a  to de te rmine  the first five 
pa rame te r s  in the M B W R  equat ion .  W e  show the dev ia t ion  p lo ts  for  the  second 
vir ial  coefficient f rom our  new pa rame te r s  and  the or ig inal  Nico las  et al. pa rame te r s  
in figure 2. The  new pa rame te r s  corre la te  the  second vir ial  coefficient over  a wide 
t empera tu re  range  with  much  h igher  accuracy  than  the Nico las  et al. parameters .  

Af te r  specifying the five pa rame te r s  in the second vir ial  coefficient cor re la t ion  
( x l - x s )  we are  left wi th  27 l inear  pa rame te r s  and  one non l inea r  p a r a m e t e r  to fit. We  
have used the molecu la r  dynamics  d a t a  l isted in table  2 to regress these pa ramete rs .  
We  weighted  the da t a  wi th  the rec iprocal  o f  the uncer ta in t ies  for  bo th  the pressures  

Table 10. New parameters for the modified Benedict -Webb-Rubin equation of  state 
regressed from the simulation data of this work. 

j xj j xj 

1 0.862 308 509 750 742 1 17 6.398 607 852 471 505e + 01 
2 2.976 218 765 822 098 18 1.603 993 673 294 834e + 01 
3 - 8-402 230 t 15 796 038 19 6-805 916 615 864 377e + 01 
4 0.105 413 662 920 355 5 20 -2.791 293 578 795 945e + 03 
5 -0.856 458 382 817 459 8 21 -6.245 128 304 568 454 
6 1.582 759 470 107 601 22 -8.116 836 104 958 410e + 03 
7 0.763942 194830 545 3 23 1-488 735 559 561 229e + 01 
8 1.753 173 414 312 048 24 - 1.059 346 754 655 084e + 04 
9 2-798291772190376e + 03 25 -1-131607632802822e + 02 

10 -4 .8394220260857657e-  02 26 -8"867771 540418822e + 03 
11 0-996 326 519 772 193 5 27 -3"986 982 844 450 543e + 01 
12 -3"698 000 291 272 493e + 01 28 -4"689 270 299 917 261 e + 03 
13 2-084 012 299 434 647e + 01 29 2"593 535 277 438 717e + 02 
14 8"305 402 124 717 285e + 01 30 -2-694 523 589 434 903e + 03 
15 -9"574799715203068e + 02 31 -7.218487631550215e + 02 
16 - 1"477 746 229 234 994e + 02 32 1"721 802 063 863 269e + 02 
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Figure 3. The pairwise-additive reduced third virial coefficient, C* = (3/(2~cr3))2C, from the 
exact calculations of Barker et al. [40] (o), the new MBWR parameters (solid line), and 
the Nicolas et al. parameters (dot-dashed line). 

and internal energies listed in table 2. For  the p* = 0.005 densities with two indepen- 
dent runs we used the average value of the runs and the sample standard deviation 
calculated from the two observed points. 

We attempted to fit simultaneously the nonlinear parameter 7 and the 27 remain- 
ing linear parameters by using the Minpack nonlinear optimization package [42]. 
However, including 7 in the fit made the problem ill-conditioned, and Minpack was 
not able to find a global minimum. As a result, we regressed the linear parameters at 
various fixed values of  7 for 1 _< 7 < 7. We observed that the minimum is a very 
weak function of 7, in agreement with the findings of  Nicolas et al. [5]. A shallow 
minimum from this search routine occurred near 7 = 3.5. However, we have chosen 
to retain the value 7 = 3 for historical reasons. This does not appreciably affect the 
accuracy of  fit. The final values of the parameters are given in table 10. The fit to the 
simulation data is very good over most of  the T*-p* plane. The average absolute 
deviations (AAD) are 0.017 in P* and 0"016 in U*. Most of  the error for both 
pressure and internal energy occurs in the region of  high temperature and high 
density, T* > 4.0 and p* > 1.0. 

The value of x 2 / N f  for this fit is 37.2, where 

Np _ x91c)2 
X2 = Z (Xistm (13) 

;=1 s 7  ' 

I/tim is the value of  either P* or U* from simulation, and Xi ~]~ is the corresponding 
value from the equation of  state. Si is the sample error of  the mean as calculated 
from the simulations, the sum is over the number of  points Np, and Nf is the number 
of degrees of  freedom, where Nf = 356 - 27 = 329 in this case. 

The reduced third virial coefficient, C* = (3/(2~cr3))2C, is shown in figure 3. 
While no C* data were directly used in the parameter regression of either Nicolas 
et al. or this work, we see that the new parameters give qualitatively correct tem- 
perature dependence of the third virial coefficient. The Nicolas et al. parameters give 
the wrong qualitative temperature dependence for T* < 2-5. Because this is the 
temperature region important for VLE, we expect the new parameters to give better 
saturated vapour densities and energies. 
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Figure 6. Saturation densities from the simulations of Lotfi et al. [11] (solid circles), and 
predictions from the equation of state using the new MBWR parameters (solid line), 
and the Nicolas et al. parameters (dot-dashed line). The line of rectilinear diameters is 
also shown for the simulation results (triangles) and from the equation of state using the 
new MBWR parameters (solid line). 

In figure 4 we show the deviations for the pressure, PlaID- Pcalc, where PMD 
denotes the MD simulation results, and Pcalc is calculated from the equation of  
state. The largest errors occur at the highest temperatures and densities. The equa- 
tion of  state does not fit this region particularly well, and one should keep this in 
mind if properties of  the high temperature dense fluid are needed. However, even at 
the highest absolute error the relative error is only -0-6%, because at this point 
P* = 85.7. This corresponds to a pressure of about 3-4 GPa for methane. The errors 
in the internal energy are shown in figure 5. The errors are again largest for the high 
temperature, high density points. It is apparent from figure 5 that the deviations are 
not random, but systematic. This indicates that the equation of state is not capable 
of  fitting both the vapour-l iquid region and high temperature region with compar- 
able accuracy. Although this highlights the shortcomings of  the MBWR equation of  
state, we stress that these errors are still only a few percent at worst. 
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predictions from the equation of state using the new MBWR parameters (solid line), 
and the Nicolas et al. parameters (dot-dashed line). 
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Figure 8. Saturation densities from the Gibbs ensemble simulations reported in reference [20] 
(solid circles), and predictions from the equation of state using the new MBWR 
parameters (solid line), and the Nicolas et  al. parameters (dot-dashed line). The line of 
rectilinear diameters is also shown for the simulation results (triangles) and from the 
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The predicted VLE data are compared with data from simulations in figures 6-9.  
In figures 6 and 7 we see the predictions compared with the VLE data of  Lotfi et al. 
Figure 6 shows the T*-p*  projection. We see that the new parameters accurately 
predict both the vapour and liquid orthobaric densities from about the triple point to 
close to the critical point. The original Nicolas et al. parameters are quite accurate at 
low temperatures, but for T ~ > 1 the new parameters are significantly more accu- 
rate. Figure 7 shows the vapour pressure curve for the LJ fluid. From this figure we 
see that the new parameters accurately predict the saturated vapour pressures up to 
the critical point. In figures 8 and 9 we present VLE calculations compared with 
Gibbs ensemble simulations. The Gibbs ensemble data were taken from the com- 
pilation in [20]. We see the same results as in figures 6 and 7, except that the Gibbs 
ensemble data show more scatter, especially at high temperatures. The new 
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parameters also give fairly good agreement with the older VLE data from the grand 
canonical simulations of  Adams [17, 27]. Although the new equation is more accu- 
rate than that of  Nicolas et al. for VLE calculations, the accuracy of  the new 
equation is somewhat lower for dense fluids at temperatures greater than twice the 
critical. 

We have compared calculations from the new equation with many of  the litera- 
ture data reviewed in section 2.1. In making the comparison, we have excluded data 
that were outside the fitting range of  the new parameters. We find that the newer 
data [11, 27, 29, 30], which were not included in fitting the Nicolas et al. equation, are 
in better agreement with the new equation than with that of  Nicolas et al. An 
exception is the data set of  Shaw [29], which includes many points in the high 
temperature, high density range, where the new equation presented here does not 
perform particularly well. The deviation plots for the pressure data of  [11, 27, 30] are 
shown in figure 10. On the whole, the new parameters give a better representation of  
the data than the parameters of  Nicolas et al. 

Schmidt and Wagner [43] developed a MBWR equation for correlating the 
properties of  oxygen and other real fluids. Like the Jacobsen-Stewart  MBWR 
equation used by Nicolas et al., the Schmidt-Wagner (SW) equation contains 32 
linear parameters for the residual Helmholtz free energy. However, the terms in the 
SW equation were selected to give the most efficient representation of  experimental 
data over a limited range. We regressed the parameters in the SW equation from the 
full LJ data of  table 2, but found that the fit was much worse than that of  the 
MBWR equation presented above. We reduced our data set to include only points 
that were within the reduced pressure range used by Schmidt and Wagner [43] to 
develop the functional form of  their equation (P < 20Pc). However, the X 2 of  the fit 
to the SW equation was still about three times that of  the Jacobsen-Stewart  MBWR 
equation fitted to the same range. We conclude that the equation used by Nicolas et 
al. is better than the SW equation for correlating thermodynamic data for the LJ 
fluid. 
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5. M B W R  for the cut and shifted potential 

In table 2 we presented simulation results for both the full LJ fluid and the cut 
and shifted fluid corresponding to the potential of  equation (4). In this section we 
present an equation of  state for the cut and shifted fluid that is based on a simple 
mean-field correction of the full LJ equation of  state presented in section 4. 

Powles [44] derived approximate corrections for transforming from the pressure 
of the full LJ fluid to that of the cut and shifted, and shifted-force fluids. He applied 
this correction to the Nicolas et al. equation and compared his calculations with a 
few simulation results for the cut and shifted, and shifted-force potentials. He found 
good agreement for the cut and shifted fluid. In this section we present a rigorous 
derivation for the corrections to the Helmholtz free energy, the pressure, and the 
internal energy. 

The change in the Helmholtz free energy due to a change in the potential can be 
written as a functional derivative [45], 

8A ~3-~ = p2g (rl, r2), (14) 

where g (rl, r2) is the pair correlation function, r i is the vector defining the position of  
atom i, and 6q~ is the change in the pair potential. For  the change in going from the 
full LJ potential to the cut and shifted potential 

&b(r) = ~bcs(r ) - ~b(r) = { -~b(rc) if r < r c (15) 
-~b(r) if r > r c' 

where ~b(r) is the full LJ potential given by equation (1), ~bcs(r ) is the cut and shifted 
potential given by equation (4), and r c is the potential cutoff. The change in 
Helmholtz energy is 

V g(r)&k(r)r2 dr (16) A c s - A  = 21tNp o 

1 . 3  , i . i �9 f �9 i , ~ �9 i i 

1.1 
I O I  - - - - -  V - O q  

1.o I~" "~ \ 

0.9 ~ % 

0.8 

0.7 ~ 
0.0'  0'.1' 0'.2' 0'.3' 0:4'  0'.5' 016' 0'.7' 0:8 ' 

p" 
0.9 

Figure 11. Saturation densities for two different cut and shifted fluids. The lines are from the 
equation using the mean-field corrections, equations (18) and (19). The solid line is for 
the cut and shifted fluid with r c = 4c~. The points and the dashed line are for the cut and 
shifted fluid with r e = 2"5o'. The points are the Gibbs ensemble data of Smit [20] and the 
dashed line is from the equation of state using the mean-field corrections. 
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are the Gibbs ensemble simulations of Smit [20], and the line is calculated from the 
equation using the mean-field corrections to the cut and shifted fluid. 

= ,27rNp[(9(rc)Ii~g(r)r2dr+ Jr~g(r)q~(r)r2dr], (17) 

where equat ion (15) has been used for 6~b(r). Next  we introduce two approximations.  
We first assume that  g(r) = 1 for r > r c. Next  we notice that  2np~~ in 
equat ion (17) is just the number  o f  pairs o f  a toms within the cutoff  o f  a central 
atom. We approximate  this by the average number  o f  pairs o f  a toms in the volume o f  
a sphere o f  radius r e. This leads directly to 

7~ - ~  7~ " (18) 

We can calculate the correct ion to the internal energy by substituting equat ion 
(18) into equat ion (8); it is exactly equal to the right hand  side o f  equat ion (18). 
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Figure 13. Saturated densities in the critical region from the mean-field approach, equations 
(18) and (19), for the cut and shifted fluid at several different values of the cutoff, r c. 
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The pressure correction is calculated from equations (18) and (6) and is given 
by 

pes-p*-32~p*2[(tr) 9 3 ( t r )  3] - ~  ~ . (19) 

These two approximations are made in the spirit of mean-field theory, and 
therefore we refer to equations (18) and (19) as the mean-field corrections for 
the cut and shifted fluid. Note that equation (19) is the same as equation (2) 
for the tail correction to the pressure except for the sign. This is because the 
shift in the potential does not affect the pressure. The correction to the energy 
is not the same as the tail, equation (3), because the energy depends on contri- 
butions form both the potential shift and the cutoff. We have applied these 
corrections to the full MBWR equation of state and compared predictions 
from this new equation of state with the cut and shifted simulation data of table 2. 
We find that calculations from the mean-field equations for the cut and shifted fluid 
are about as accurate as the fit to the full LJ data. The AAD for P* is 0"017 
and for U* the AAD is 0-016, and the value of x2/Nr is 34.4, for Nf = 356, which 
indicates that the mean-field approximations are very accurate for this cutoff. The 
critical properties predicted from equation (19) are Te* = 1.246, p~ = 0.308 and 
Pc = 0-118, for r c -- 4or. 

This mean-field approach is not limited to a cutoff of 4a, of course. The 
same equations may be applied to any cutoff. However, the accuracy of both 
approximations will deteriorate as rc becomes smaller. In figure 11 we present 
the T*-p* projection of the vapour-liquid phase diagram for the cut and shifted 
fluid for two different values of r e . The solid line was calculated from the mean-field 
approach with r c = 4a, while the dashed line is for r e --2.5tr. The points are the 
Gibbs ensemble results of Smit [20] with re = 2-5tr. We see that the mean-field 
approach gives very good agreement with the Gibbs ensemble results for T* < 1, 
but the equation of  state predicts a lower critical temperature and exhibits an 
unphysical hump in the phase diagram near the critical point, as was noted by Smit 
[20, 21]. Figure 12 shows the vapour pressure plot for the cut and shifted fluid with 
r e = 2-5cr from the equation of state and from simulations. The mean-field approach 
predicts the saturation pressures to within the accuracy of the simulations, except 
near the critical point. The unphysical hump in the phase dome may be related to a 
problem noted by Reddy and O'Shea [46], who regressed parameters for the MBWR 
equation of state from data for the 2-dimensional LJ fluid. They did not fix the 
values of the critical temperature and density in fitting the parameters, and found 
that the resulting equation had three solutions for the critical conditions (11) and 
(12). We have searched for the critical points of the MBWR equation using a 
nonlinear root finding routine to solve equations (11) and (12) by starting from 
various initial guesses. For re = 2"5tr the equation predicts three critical points, the 
(T*,p*) coordinates of which are (0.7248, 0.3432), (1-0017, 0-329), and (1.0399, 
0.2215). These last two critical points are very close, and are perhaps responsible 
for the unphysical region in the phase diagram. We have tested the limit of applic- 
ability of the mean-field equation by examining the saturation densities in the critical 
region for various values of re (figure 13). We find that the unphysical hump begins 
to appear around r e = 2-9tr, and therefore conclude that the mean-field equations for 
the cut and shifted fluid should give reasonable results for r e > 3a. 
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Figure 14. Vapour-liquid equilibrium calculations for LJ mixtures from the Gibbs ensemble 
simulations of reference [49] (points) and from the equation of state with new 
parameters (lines). The LJ parameters are e22/~11 = 0.5 and ~r22/~rll = 1. The Lorentz- 
Berthelot combining rules are used for the cross-interactions. 

6. Extension to mixtures 

The MBWR equation was developed for pure fluids. Any attempt to apply this 
equation to mixtures must include some approximate theory such as the conformal 
solution theory or corresponding states [47]. The most successful conformal solution 
theory is the van der Waals one-fluid theory (vdWl).  The vdWt theory is capable of  
predicting accurately the behaviour of  fluid mixtures if the difference in size or 
energy parameters is not too large. Shing and Gubbins [48] found that vdWl gives 
good results for Henry's law constants when the difference in the LJ size parameter is 
not more than about 10%. Harismiadis et al. [49] found fairly good results using 
vdW1 for phase equilibrium calculations of  binary LJ mixtures, even when both the 
size and energy parameters differed by a factor of  2. Their results suggest that phase 
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Figure 15. Vapour-liquid equilibrium calculations for LJ mixtures from the Gibbs ensemble 
simulations of reference [49] (points) and from the equation of state with new 
parameters (line). The LJ parameters are e22/c11 = 0.5 and ~22/all = 0-5. The Lorentz- 
Berthelot combining rules are used for the cross-interactions. 
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equilibrium calculations are less sensitive to mixing rules than excess properties or 
infinite dilution chemical potentials. 

The vdWl mixing rules for the LJ fluid are 

and 

3 

= Z Z 
i j 

(20) 

where (Oox ] 
The last term in equation (22) simplifies after some algebra to 

( OA*'~ = (~.2 T* [ ['Ocr3x'~ ] (A* - Ur*) (Oex'~ (25) 

Note that equations (22-25) contain both reduced (p*) and unreduced (p) densities. 
We have performed phase equilibrium calculations for three binary LJ mixtures 

and compared the results with Gibbs ensemble simulation data from reference [49]. 
In figure 14 we present the data for a mixture with the LJ parameters e22 = 0"5ell and 
cr22 =t r l l .  The Lorentz-Berthelot combining rules were used for the cross- 
parameters. The agreement between simulation and the equation of state is generally 
quite good. The predicted critical points are somewhat too high in pressure, and the 
liquid phase mole fractions are also high. The P, X, Y diagram for the system with 
e22 --- 0"5eu and ~r22 = 0"5~rl1 is shown in figure 15. Even for this highly asymmetric 
mixture the vdW1 mixing rules give surprisingly good results for the pressure and 
mole fractions. 

(24) 

1 3 ex = --~ Z Z XiXjeij~rij, (21) 
x i j 

where the subscript x denotes the mixture property and X,. is the mole fraction of 
component i in the mixture. The cross-interaction parameters e/j and a~j are often 
chosen by some kind of  combining rules, e.g., Lorentz-Berthelot. 

The MBWR equation of state used in this work gives the Helmholtz free energy as a 
function of p* and T*. For mixtures we use the same functional form, but the inde- 
pendent variables become composition-dependent through p* = pcr3x and T* = k T/ex. 
The reduced thermodynamic properties are also explicitly composition-dependent: 
A*r Ar/Nex, P * =  3 * = P~rx/e x, and Ur = U/Ncx. The chemical potential for com- 
ponent i in the mixture can be calculated from 

(OAr~ (O(NA*rex)~ 
I'Zr'i = t-'~iiJ T,V, Nj#,= ~ ONi ] r,v,~,,, 

.. [Oex'~ +pex(OA*~ (22) 
= A*, x -I- ArPt~Pi ) T,p,., \ OPi J T,.,@i 

The partial derivatives require derivatives of the mixing rules. 

op,) t.op, ) p 
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7. Conclusion 

We have presented accurate new MD simulation results for the LJ fluid at 175 
different state points over a wide range of  temperature and density, together with a 
few MC simulation data. 

Parameters for the MBWR equation of state for the LJ fluid have been regressed 
for the temperature range 0-7 < T * <  6 and covering the entire fluid range of 
densities. The equation is especially accurate for vapour-liquid equilibrium calcula- 
tions. Agreement for saturated densities and vapour pressures is seen with Gibbs 
ensemble, N P T +  particle insertion, and grand canonical Monte Carlo simulations. 
Because we have no more parameters at our disposal than did Nicolas et al., this 
improved accuracy for phase equilibrium calculations has come at the expense of 
some loss of accuracy for liquid states at sub-triple point temperatures and at high 
temperatures (T* > 4) and high densities (p* > 1-0). 

We have presented an equation of  state for the cut and shifted fluid that is based 
on a mean-field correction to the equation of state for the full LJ fluid. This method 
is applicable for any cutoff; however, the accuracy decreases as the cutoff decreases. 
For values of r c < 3a~ the equation fails to give physically meaningful results in the 
critical region. 

We have performed calculations for various LJ binary mixtures with the van der 
Waals one-fluid theory, using the MBWR equation for the reference fluid. These 
calculated values have been compared with Gibbs ensemble simulation data. Predic- 
tions from the equation of state are in quite good agreement with the simulation 
results for the pressures and compositions. 

We thank Drs. F. van Swol, S. M. Thompson, and B. Smit for helpful discus- 
sions. This work was supported under contract number 5091-260-2255 from the Gas 
Research Institute, and in part by the National Science Foundation (grant number 
CTS-9122460). 
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